Whakaoti mō x, y
x=-4
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-6y=16,-x+2y=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-6y=16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=6y+16
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(6y+16\right)
Whakawehea ngā taha e rua ki te 2.
x=3y+8
Whakareatia \frac{1}{2} ki te 6y+16.
-\left(3y+8\right)+2y=-4
Whakakapia te 3y+8 mō te x ki tērā atu whārite, -x+2y=-4.
-3y-8+2y=-4
Whakareatia -1 ki te 3y+8.
-y-8=-4
Tāpiri -3y ki te 2y.
-y=4
Me tāpiri 8 ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua ki te -1.
x=3\left(-4\right)+8
Whakaurua te -4 mō y ki x=3y+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-12+8
Whakareatia 3 ki te -4.
x=-4
Tāpiri 8 ki te -12.
x=-4,y=-4
Kua oti te pūnaha te whakatau.
2x-6y=16,-x+2y=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right))\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-6\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-6\left(-1\right)\right)}&-\frac{-6}{2\times 2-\left(-6\left(-1\right)\right)}\\-\frac{-1}{2\times 2-\left(-6\left(-1\right)\right)}&\frac{2}{2\times 2-\left(-6\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}16\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-3\\-\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}16\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16-3\left(-4\right)\\-\frac{1}{2}\times 16-\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=-4
Tangohia ngā huānga poukapa x me y.
2x-6y=16,-x+2y=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-\left(-6y\right)=-16,2\left(-1\right)x+2\times 2y=2\left(-4\right)
Kia ōrite ai a 2x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-2x+6y=-16,-2x+4y=-8
Whakarūnātia.
-2x+2x+6y-4y=-16+8
Me tango -2x+4y=-8 mai i -2x+6y=-16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-4y=-16+8
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=-16+8
Tāpiri 6y ki te -4y.
2y=-8
Tāpiri -16 ki te 8.
y=-4
Whakawehea ngā taha e rua ki te 2.
-x+2\left(-4\right)=-4
Whakaurua te -4 mō y ki -x+2y=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x-8=-4
Whakareatia 2 ki te -4.
-x=4
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te -1.
x=-4,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}