Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-5y=10,4x+y=120
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-5y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=5y+10
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(5y+10\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{5}{2}y+5
Whakareatia \frac{1}{2} ki te 10+5y.
4\left(\frac{5}{2}y+5\right)+y=120
Whakakapia te 5+\frac{5y}{2} mō te x ki tērā atu whārite, 4x+y=120.
10y+20+y=120
Whakareatia 4 ki te 5+\frac{5y}{2}.
11y+20=120
Tāpiri 10y ki te y.
11y=100
Me tango 20 mai i ngā taha e rua o te whārite.
y=\frac{100}{11}
Whakawehea ngā taha e rua ki te 11.
x=\frac{5}{2}\times \frac{100}{11}+5
Whakaurua te \frac{100}{11} mō y ki x=\frac{5}{2}y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{250}{11}+5
Whakareatia \frac{5}{2} ki te \frac{100}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{305}{11}
Tāpiri 5 ki te \frac{250}{11}.
x=\frac{305}{11},y=\frac{100}{11}
Kua oti te pūnaha te whakatau.
2x-5y=10,4x+y=120
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\120\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\120\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-5\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\120\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\120\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-5\times 4\right)}&-\frac{-5}{2-\left(-5\times 4\right)}\\-\frac{4}{2-\left(-5\times 4\right)}&\frac{2}{2-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}10\\120\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}&\frac{5}{22}\\-\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}10\\120\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}\times 10+\frac{5}{22}\times 120\\-\frac{2}{11}\times 10+\frac{1}{11}\times 120\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{305}{11}\\\frac{100}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{305}{11},y=\frac{100}{11}
Tangohia ngā huānga poukapa x me y.
2x-5y=10,4x+y=120
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\left(-5\right)y=4\times 10,2\times 4x+2y=2\times 120
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x-20y=40,8x+2y=240
Whakarūnātia.
8x-8x-20y-2y=40-240
Me tango 8x+2y=240 mai i 8x-20y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-20y-2y=40-240
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-22y=40-240
Tāpiri -20y ki te -2y.
-22y=-200
Tāpiri 40 ki te -240.
y=\frac{100}{11}
Whakawehea ngā taha e rua ki te -22.
4x+\frac{100}{11}=120
Whakaurua te \frac{100}{11} mō y ki 4x+y=120. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=\frac{1220}{11}
Me tango \frac{100}{11} mai i ngā taha e rua o te whārite.
x=\frac{305}{11}
Whakawehea ngā taha e rua ki te 4.
x=\frac{305}{11},y=\frac{100}{11}
Kua oti te pūnaha te whakatau.