Whakaoti mō x, y
x=\frac{1}{4}=0.25
y = -\frac{19}{8} = -2\frac{3}{8} = -2.375
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-4y=10,6x-4y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-4y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=4y+10
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(4y+10\right)
Whakawehea ngā taha e rua ki te 2.
x=2y+5
Whakareatia \frac{1}{2} ki te 4y+10.
6\left(2y+5\right)-4y=11
Whakakapia te 2y+5 mō te x ki tērā atu whārite, 6x-4y=11.
12y+30-4y=11
Whakareatia 6 ki te 2y+5.
8y+30=11
Tāpiri 12y ki te -4y.
8y=-19
Me tango 30 mai i ngā taha e rua o te whārite.
y=-\frac{19}{8}
Whakawehea ngā taha e rua ki te 8.
x=2\left(-\frac{19}{8}\right)+5
Whakaurua te -\frac{19}{8} mō y ki x=2y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{19}{4}+5
Whakareatia 2 ki te -\frac{19}{8}.
x=\frac{1}{4}
Tāpiri 5 ki te -\frac{19}{4}.
x=\frac{1}{4},y=-\frac{19}{8}
Kua oti te pūnaha te whakatau.
2x-4y=10,6x-4y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-4\\6&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-\left(-4\times 6\right)}&-\frac{-4}{2\left(-4\right)-\left(-4\times 6\right)}\\-\frac{6}{2\left(-4\right)-\left(-4\times 6\right)}&\frac{2}{2\left(-4\right)-\left(-4\times 6\right)}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{3}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 10+\frac{1}{4}\times 11\\-\frac{3}{8}\times 10+\frac{1}{8}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\-\frac{19}{8}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{4},y=-\frac{19}{8}
Tangohia ngā huānga poukapa x me y.
2x-4y=10,6x-4y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-6x-4y+4y=10-11
Me tango 6x-4y=11 mai i 2x-4y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-6x=10-11
Tāpiri -4y ki te 4y. Ka whakakore atu ngā kupu -4y me 4y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4x=10-11
Tāpiri 2x ki te -6x.
-4x=-1
Tāpiri 10 ki te -11.
x=\frac{1}{4}
Whakawehea ngā taha e rua ki te -4.
6\times \frac{1}{4}-4y=11
Whakaurua te \frac{1}{4} mō x ki 6x-4y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
\frac{3}{2}-4y=11
Whakareatia 6 ki te \frac{1}{4}.
-4y=\frac{19}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
y=-\frac{19}{8}
Whakawehea ngā taha e rua ki te -4.
x=\frac{1}{4},y=-\frac{19}{8}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}