Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-4y=-2,3x+2y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-4y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=4y-2
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(4y-2\right)
Whakawehea ngā taha e rua ki te 2.
x=2y-1
Whakareatia \frac{1}{2} ki te 4y-2.
3\left(2y-1\right)+2y=3
Whakakapia te 2y-1 mō te x ki tērā atu whārite, 3x+2y=3.
6y-3+2y=3
Whakareatia 3 ki te 2y-1.
8y-3=3
Tāpiri 6y ki te 2y.
8y=6
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=\frac{3}{4}
Whakawehea ngā taha e rua ki te 8.
x=2\times \frac{3}{4}-1
Whakaurua te \frac{3}{4} mō y ki x=2y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3}{2}-1
Whakareatia 2 ki te \frac{3}{4}.
x=\frac{1}{2}
Tāpiri -1 ki te \frac{3}{2}.
x=\frac{1}{2},y=\frac{3}{4}
Kua oti te pūnaha te whakatau.
2x-4y=-2,3x+2y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-4\\3&2\end{matrix}\right))\left(\begin{matrix}2&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\3&2\end{matrix}\right))\left(\begin{matrix}-2\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-4\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\3&2\end{matrix}\right))\left(\begin{matrix}-2\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\3&2\end{matrix}\right))\left(\begin{matrix}-2\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-4\times 3\right)}&-\frac{-4}{2\times 2-\left(-4\times 3\right)}\\-\frac{3}{2\times 2-\left(-4\times 3\right)}&\frac{2}{2\times 2-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-2\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{4}\\-\frac{3}{16}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}-2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\left(-2\right)+\frac{1}{4}\times 3\\-\frac{3}{16}\left(-2\right)+\frac{1}{8}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\\frac{3}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{2},y=\frac{3}{4}
Tangohia ngā huānga poukapa x me y.
2x-4y=-2,3x+2y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-4\right)y=3\left(-2\right),2\times 3x+2\times 2y=2\times 3
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-12y=-6,6x+4y=6
Whakarūnātia.
6x-6x-12y-4y=-6-6
Me tango 6x+4y=6 mai i 6x-12y=-6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y-4y=-6-6
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16y=-6-6
Tāpiri -12y ki te -4y.
-16y=-12
Tāpiri -6 ki te -6.
y=\frac{3}{4}
Whakawehea ngā taha e rua ki te -16.
3x+2\times \frac{3}{4}=3
Whakaurua te \frac{3}{4} mō y ki 3x+2y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+\frac{3}{2}=3
Whakareatia 2 ki te \frac{3}{4}.
3x=\frac{3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
x=\frac{1}{2}
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{2},y=\frac{3}{4}
Kua oti te pūnaha te whakatau.