Whakaoti mō x, y
x = \frac{137}{43} = 3\frac{8}{43} \approx 3.186046512
y = -\frac{52}{43} = -1\frac{9}{43} \approx -1.209302326
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-3y=10
Whakaarohia te whārite tuatahi. Me tāpiri te 10 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
17y+3x=-11
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
2x-3y=10,3x+17y=-11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y+10
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+10\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+5
Whakareatia \frac{1}{2} ki te 3y+10.
3\left(\frac{3}{2}y+5\right)+17y=-11
Whakakapia te \frac{3y}{2}+5 mō te x ki tērā atu whārite, 3x+17y=-11.
\frac{9}{2}y+15+17y=-11
Whakareatia 3 ki te \frac{3y}{2}+5.
\frac{43}{2}y+15=-11
Tāpiri \frac{9y}{2} ki te 17y.
\frac{43}{2}y=-26
Me tango 15 mai i ngā taha e rua o te whārite.
y=-\frac{52}{43}
Whakawehea ngā taha e rua o te whārite ki te \frac{43}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{2}\left(-\frac{52}{43}\right)+5
Whakaurua te -\frac{52}{43} mō y ki x=\frac{3}{2}y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{78}{43}+5
Whakareatia \frac{3}{2} ki te -\frac{52}{43} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{137}{43}
Tāpiri 5 ki te -\frac{78}{43}.
x=\frac{137}{43},y=-\frac{52}{43}
Kua oti te pūnaha te whakatau.
2x-3y=10
Whakaarohia te whārite tuatahi. Me tāpiri te 10 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
17y+3x=-11
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
2x-3y=10,3x+17y=-11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\3&17\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\3&17\end{matrix}\right))\left(\begin{matrix}2&-3\\3&17\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&17\end{matrix}\right))\left(\begin{matrix}10\\-11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\3&17\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&17\end{matrix}\right))\left(\begin{matrix}10\\-11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&17\end{matrix}\right))\left(\begin{matrix}10\\-11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{2\times 17-\left(-3\times 3\right)}&-\frac{-3}{2\times 17-\left(-3\times 3\right)}\\-\frac{3}{2\times 17-\left(-3\times 3\right)}&\frac{2}{2\times 17-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}10\\-11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{43}&\frac{3}{43}\\-\frac{3}{43}&\frac{2}{43}\end{matrix}\right)\left(\begin{matrix}10\\-11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{43}\times 10+\frac{3}{43}\left(-11\right)\\-\frac{3}{43}\times 10+\frac{2}{43}\left(-11\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{137}{43}\\-\frac{52}{43}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{137}{43},y=-\frac{52}{43}
Tangohia ngā huānga poukapa x me y.
2x-3y=10
Whakaarohia te whārite tuatahi. Me tāpiri te 10 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
17y+3x=-11
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
2x-3y=10,3x+17y=-11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-3\right)y=3\times 10,2\times 3x+2\times 17y=2\left(-11\right)
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-9y=30,6x+34y=-22
Whakarūnātia.
6x-6x-9y-34y=30+22
Me tango 6x+34y=-22 mai i 6x-9y=30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9y-34y=30+22
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-43y=30+22
Tāpiri -9y ki te -34y.
-43y=52
Tāpiri 30 ki te 22.
y=-\frac{52}{43}
Whakawehea ngā taha e rua ki te -43.
3x+17\left(-\frac{52}{43}\right)=-11
Whakaurua te -\frac{52}{43} mō y ki 3x+17y=-11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-\frac{884}{43}=-11
Whakareatia 17 ki te -\frac{52}{43}.
3x=\frac{411}{43}
Me tāpiri \frac{884}{43} ki ngā taha e rua o te whārite.
x=\frac{137}{43}
Whakawehea ngā taha e rua ki te 3.
x=\frac{137}{43},y=-\frac{52}{43}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}