Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-3y=15,3x-2y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y+15
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+15\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+\frac{15}{2}
Whakareatia \frac{1}{2} ki te 15+3y.
3\left(\frac{3}{2}y+\frac{15}{2}\right)-2y=10
Whakakapia te \frac{15+3y}{2} mō te x ki tērā atu whārite, 3x-2y=10.
\frac{9}{2}y+\frac{45}{2}-2y=10
Whakareatia 3 ki te \frac{15+3y}{2}.
\frac{5}{2}y+\frac{45}{2}=10
Tāpiri \frac{9y}{2} ki te -2y.
\frac{5}{2}y=-\frac{25}{2}
Me tango \frac{45}{2} mai i ngā taha e rua o te whārite.
y=-5
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{2}\left(-5\right)+\frac{15}{2}
Whakaurua te -5 mō y ki x=\frac{3}{2}y+\frac{15}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-15+15}{2}
Whakareatia \frac{3}{2} ki te -5.
x=0
Tāpiri \frac{15}{2} ki te -\frac{15}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=-5
Kua oti te pūnaha te whakatau.
2x-3y=15,3x-2y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}&-\frac{-3}{2\left(-2\right)-\left(-3\times 3\right)}\\-\frac{3}{2\left(-2\right)-\left(-3\times 3\right)}&\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 15+\frac{3}{5}\times 10\\-\frac{3}{5}\times 15+\frac{2}{5}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-5
Tangohia ngā huānga poukapa x me y.
2x-3y=15,3x-2y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-3\right)y=3\times 15,2\times 3x+2\left(-2\right)y=2\times 10
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-9y=45,6x-4y=20
Whakarūnātia.
6x-6x-9y+4y=45-20
Me tango 6x-4y=20 mai i 6x-9y=45 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9y+4y=45-20
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=45-20
Tāpiri -9y ki te 4y.
-5y=25
Tāpiri 45 ki te -20.
y=-5
Whakawehea ngā taha e rua ki te -5.
3x-2\left(-5\right)=10
Whakaurua te -5 mō y ki 3x-2y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+10=10
Whakareatia -2 ki te -5.
3x=0
Me tango 10 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 3.
x=0,y=-5
Kua oti te pūnaha te whakatau.