Whakaoti mō x, y
x=2
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-3y=13,5x-y=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y+13
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+13\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+\frac{13}{2}
Whakareatia \frac{1}{2} ki te 3y+13.
5\left(\frac{3}{2}y+\frac{13}{2}\right)-y=13
Whakakapia te \frac{3y+13}{2} mō te x ki tērā atu whārite, 5x-y=13.
\frac{15}{2}y+\frac{65}{2}-y=13
Whakareatia 5 ki te \frac{3y+13}{2}.
\frac{13}{2}y+\frac{65}{2}=13
Tāpiri \frac{15y}{2} ki te -y.
\frac{13}{2}y=-\frac{39}{2}
Me tango \frac{65}{2} mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{2}\left(-3\right)+\frac{13}{2}
Whakaurua te -3 mō y ki x=\frac{3}{2}y+\frac{13}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-9+13}{2}
Whakareatia \frac{3}{2} ki te -3.
x=2
Tāpiri \frac{13}{2} ki te -\frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-3
Kua oti te pūnaha te whakatau.
2x-3y=13,5x-y=13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}13\\13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}13\\13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}13\\13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-3\times 5\right)}&-\frac{-3}{2\left(-1\right)-\left(-3\times 5\right)}\\-\frac{5}{2\left(-1\right)-\left(-3\times 5\right)}&\frac{2}{2\left(-1\right)-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}13\\13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&\frac{3}{13}\\-\frac{5}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}13\\13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\times 13+\frac{3}{13}\times 13\\-\frac{5}{13}\times 13+\frac{2}{13}\times 13\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-3
Tangohia ngā huānga poukapa x me y.
2x-3y=13,5x-y=13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2x+5\left(-3\right)y=5\times 13,2\times 5x+2\left(-1\right)y=2\times 13
Kia ōrite ai a 2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10x-15y=65,10x-2y=26
Whakarūnātia.
10x-10x-15y+2y=65-26
Me tango 10x-2y=26 mai i 10x-15y=65 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-15y+2y=65-26
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13y=65-26
Tāpiri -15y ki te 2y.
-13y=39
Tāpiri 65 ki te -26.
y=-3
Whakawehea ngā taha e rua ki te -13.
5x-\left(-3\right)=13
Whakaurua te -3 mō y ki 5x-y=13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=10
Me tango 3 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 5.
x=2,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}