Whakaoti mō x, y
x = \frac{15}{4} = 3\frac{3}{4} = 3.75
y = \frac{17}{6} = 2\frac{5}{6} \approx 2.833333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-3y=-1,2x+3y=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y-1
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y-1\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y-\frac{1}{2}
Whakareatia \frac{1}{2} ki te 3y-1.
2\left(\frac{3}{2}y-\frac{1}{2}\right)+3y=16
Whakakapia te \frac{3y-1}{2} mō te x ki tērā atu whārite, 2x+3y=16.
3y-1+3y=16
Whakareatia 2 ki te \frac{3y-1}{2}.
6y-1=16
Tāpiri 3y ki te 3y.
6y=17
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=\frac{17}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{3}{2}\times \frac{17}{6}-\frac{1}{2}
Whakaurua te \frac{17}{6} mō y ki x=\frac{3}{2}y-\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{17}{4}-\frac{1}{2}
Whakareatia \frac{3}{2} ki te \frac{17}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{15}{4}
Tāpiri -\frac{1}{2} ki te \frac{17}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{15}{4},y=\frac{17}{6}
Kua oti te pūnaha te whakatau.
2x-3y=-1,2x+3y=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}2&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-3\times 2\right)}&-\frac{-3}{2\times 3-\left(-3\times 2\right)}\\-\frac{2}{2\times 3-\left(-3\times 2\right)}&\frac{2}{2\times 3-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-1\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-1\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-1\right)+\frac{1}{4}\times 16\\-\frac{1}{6}\left(-1\right)+\frac{1}{6}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{4}\\\frac{17}{6}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{15}{4},y=\frac{17}{6}
Tangohia ngā huānga poukapa x me y.
2x-3y=-1,2x+3y=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-2x-3y-3y=-1-16
Me tango 2x+3y=16 mai i 2x-3y=-1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-3y=-1-16
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=-1-16
Tāpiri -3y ki te -3y.
-6y=-17
Tāpiri -1 ki te -16.
y=\frac{17}{6}
Whakawehea ngā taha e rua ki te -6.
2x+3\times \frac{17}{6}=16
Whakaurua te \frac{17}{6} mō y ki 2x+3y=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{17}{2}=16
Whakareatia 3 ki te \frac{17}{6}.
2x=\frac{15}{2}
Me tango \frac{17}{2} mai i ngā taha e rua o te whārite.
x=\frac{15}{4}
Whakawehea ngā taha e rua ki te 2.
x=\frac{15}{4},y=\frac{17}{6}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}