Whakaoti mō x, y, z
x=\frac{1}{2}=0.5
y=\frac{1}{3}\approx 0.333333333
z=-1
Tohaina
Kua tāruatia ki te papatopenga
z=-2x+3y-1
Me whakaoti te 2x-3y+z=-1 mō z.
6x-9y-4\left(-2x+3y-1\right)=4 4x+6y-\left(-2x+3y-1\right)=5
Whakakapia te -2x+3y-1 mō te z i te whārite tuarua me te tuatoru.
y=\frac{2}{3}x x=-\frac{1}{2}y+\frac{2}{3}
Me whakaoti ēnei whārite mō y me x takitahi.
x=-\frac{1}{2}\times \frac{2}{3}x+\frac{2}{3}
Whakakapia te \frac{2}{3}x mō te y i te whārite x=-\frac{1}{2}y+\frac{2}{3}.
x=\frac{1}{2}
Me whakaoti te x=-\frac{1}{2}\times \frac{2}{3}x+\frac{2}{3} mō x.
y=\frac{2}{3}\times \frac{1}{2}
Whakakapia te \frac{1}{2} mō te x i te whārite y=\frac{2}{3}x.
y=\frac{1}{3}
Tātaitia te y i te y=\frac{2}{3}\times \frac{1}{2}.
z=-2\times \frac{1}{2}+3\times \frac{1}{3}-1
Whakakapia te \frac{1}{3} mō te y me te \frac{1}{2} mō x i te whārite z=-2x+3y-1.
z=-1
Tātaitia te z i te z=-2\times \frac{1}{2}+3\times \frac{1}{3}-1.
x=\frac{1}{2} y=\frac{1}{3} z=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}