Whakaoti mō x, y
x=-2
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-3y+13=0,3x-2y+12=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y+13=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x-3y=-13
Me tango 13 mai i ngā taha e rua o te whārite.
2x=3y-13
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y-13\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y-\frac{13}{2}
Whakareatia \frac{1}{2} ki te 3y-13.
3\left(\frac{3}{2}y-\frac{13}{2}\right)-2y+12=0
Whakakapia te \frac{3y-13}{2} mō te x ki tērā atu whārite, 3x-2y+12=0.
\frac{9}{2}y-\frac{39}{2}-2y+12=0
Whakareatia 3 ki te \frac{3y-13}{2}.
\frac{5}{2}y-\frac{39}{2}+12=0
Tāpiri \frac{9y}{2} ki te -2y.
\frac{5}{2}y-\frac{15}{2}=0
Tāpiri -\frac{39}{2} ki te 12.
\frac{5}{2}y=\frac{15}{2}
Me tāpiri \frac{15}{2} ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{2}\times 3-\frac{13}{2}
Whakaurua te 3 mō y ki x=\frac{3}{2}y-\frac{13}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9-13}{2}
Whakareatia \frac{3}{2} ki te 3.
x=-2
Tāpiri -\frac{13}{2} ki te \frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2,y=3
Kua oti te pūnaha te whakatau.
2x-3y+13=0,3x-2y+12=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\-12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}-13\\-12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}-13\\-12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}-13\\-12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}&-\frac{-3}{2\left(-2\right)-\left(-3\times 3\right)}\\-\frac{3}{2\left(-2\right)-\left(-3\times 3\right)}&\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-13\\-12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-13\\-12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-13\right)+\frac{3}{5}\left(-12\right)\\-\frac{3}{5}\left(-13\right)+\frac{2}{5}\left(-12\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=3
Tangohia ngā huānga poukapa x me y.
2x-3y+13=0,3x-2y+12=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-3\right)y+3\times 13=0,2\times 3x+2\left(-2\right)y+2\times 12=0
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-9y+39=0,6x-4y+24=0
Whakarūnātia.
6x-6x-9y+4y+39-24=0
Me tango 6x-4y+24=0 mai i 6x-9y+39=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9y+4y+39-24=0
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y+39-24=0
Tāpiri -9y ki te 4y.
-5y+15=0
Tāpiri 39 ki te -24.
-5y=-15
Me tango 15 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te -5.
3x-2\times 3+12=0
Whakaurua te 3 mō y ki 3x-2y+12=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-6+12=0
Whakareatia -2 ki te 3.
3x+6=0
Tāpiri -6 ki te 12.
3x=-6
Me tango 6 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te 3.
x=-2,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}