Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+4y=\frac{1}{2}+2
Whakaarohia te whārite tuatahi. Me tāpiri te 2 ki ngā taha e rua.
2x+4y=\frac{5}{2}
Tāpirihia te \frac{1}{2} ki te 2, ka \frac{5}{2}.
8y-4=9\left(x+1\right)-4
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te y-\frac{1}{2}.
8y-4=9x+9-4
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x+1.
8y-4=9x+5
Tangohia te 4 i te 9, ka 5.
8y-4-9x=5
Tangohia te 9x mai i ngā taha e rua.
8y-9x=5+4
Me tāpiri te 4 ki ngā taha e rua.
8y-9x=9
Tāpirihia te 5 ki te 4, ka 9.
2x+4y=\frac{5}{2},-9x+8y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+4y=\frac{5}{2}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-4y+\frac{5}{2}
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-4y+\frac{5}{2}\right)
Whakawehea ngā taha e rua ki te 2.
x=-2y+\frac{5}{4}
Whakareatia \frac{1}{2} ki te -4y+\frac{5}{2}.
-9\left(-2y+\frac{5}{4}\right)+8y=9
Whakakapia te -2y+\frac{5}{4} mō te x ki tērā atu whārite, -9x+8y=9.
18y-\frac{45}{4}+8y=9
Whakareatia -9 ki te -2y+\frac{5}{4}.
26y-\frac{45}{4}=9
Tāpiri 18y ki te 8y.
26y=\frac{81}{4}
Me tāpiri \frac{45}{4} ki ngā taha e rua o te whārite.
y=\frac{81}{104}
Whakawehea ngā taha e rua ki te 26.
x=-2\times \frac{81}{104}+\frac{5}{4}
Whakaurua te \frac{81}{104} mō y ki x=-2y+\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{81}{52}+\frac{5}{4}
Whakareatia -2 ki te \frac{81}{104}.
x=-\frac{4}{13}
Tāpiri \frac{5}{4} ki te -\frac{81}{52} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{4}{13},y=\frac{81}{104}
Kua oti te pūnaha te whakatau.
2x+4y=\frac{1}{2}+2
Whakaarohia te whārite tuatahi. Me tāpiri te 2 ki ngā taha e rua.
2x+4y=\frac{5}{2}
Tāpirihia te \frac{1}{2} ki te 2, ka \frac{5}{2}.
8y-4=9\left(x+1\right)-4
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te y-\frac{1}{2}.
8y-4=9x+9-4
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x+1.
8y-4=9x+5
Tangohia te 4 i te 9, ka 5.
8y-4-9x=5
Tangohia te 9x mai i ngā taha e rua.
8y-9x=5+4
Me tāpiri te 4 ki ngā taha e rua.
8y-9x=9
Tāpirihia te 5 ki te 4, ka 9.
2x+4y=\frac{5}{2},-9x+8y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&4\\-9&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&4\\-9&8\end{matrix}\right))\left(\begin{matrix}2&4\\-9&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\-9&8\end{matrix}\right))\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&4\\-9&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\-9&8\end{matrix}\right))\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\-9&8\end{matrix}\right))\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{2\times 8-4\left(-9\right)}&-\frac{4}{2\times 8-4\left(-9\right)}\\-\frac{-9}{2\times 8-4\left(-9\right)}&\frac{2}{2\times 8-4\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&-\frac{1}{13}\\\frac{9}{52}&\frac{1}{26}\end{matrix}\right)\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times \frac{5}{2}-\frac{1}{13}\times 9\\\frac{9}{52}\times \frac{5}{2}+\frac{1}{26}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{13}\\\frac{81}{104}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{4}{13},y=\frac{81}{104}
Tangohia ngā huānga poukapa x me y.
2x+4y=\frac{1}{2}+2
Whakaarohia te whārite tuatahi. Me tāpiri te 2 ki ngā taha e rua.
2x+4y=\frac{5}{2}
Tāpirihia te \frac{1}{2} ki te 2, ka \frac{5}{2}.
8y-4=9\left(x+1\right)-4
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te y-\frac{1}{2}.
8y-4=9x+9-4
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x+1.
8y-4=9x+5
Tangohia te 4 i te 9, ka 5.
8y-4-9x=5
Tangohia te 9x mai i ngā taha e rua.
8y-9x=5+4
Me tāpiri te 4 ki ngā taha e rua.
8y-9x=9
Tāpirihia te 5 ki te 4, ka 9.
2x+4y=\frac{5}{2},-9x+8y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-9\times 2x-9\times 4y=-9\times \frac{5}{2},2\left(-9\right)x+2\times 8y=2\times 9
Kia ōrite ai a 2x me -9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-18x-36y=-\frac{45}{2},-18x+16y=18
Whakarūnātia.
-18x+18x-36y-16y=-\frac{45}{2}-18
Me tango -18x+16y=18 mai i -18x-36y=-\frac{45}{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-36y-16y=-\frac{45}{2}-18
Tāpiri -18x ki te 18x. Ka whakakore atu ngā kupu -18x me 18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-52y=-\frac{45}{2}-18
Tāpiri -36y ki te -16y.
-52y=-\frac{81}{2}
Tāpiri -\frac{45}{2} ki te -18.
y=\frac{81}{104}
Whakawehea ngā taha e rua ki te -52.
-9x+8\times \frac{81}{104}=9
Whakaurua te \frac{81}{104} mō y ki -9x+8y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-9x+\frac{81}{13}=9
Whakareatia 8 ki te \frac{81}{104}.
-9x=\frac{36}{13}
Me tango \frac{81}{13} mai i ngā taha e rua o te whārite.
x=-\frac{4}{13}
Whakawehea ngā taha e rua ki te -9.
x=-\frac{4}{13},y=\frac{81}{104}
Kua oti te pūnaha te whakatau.