Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-19y=-10,19x-18y=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-19y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=19y-10
Me tāpiri 19y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(19y-10\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{19}{2}y-5
Whakareatia \frac{1}{2} ki te 19y-10.
19\left(\frac{19}{2}y-5\right)-18y=13
Whakakapia te \frac{19y}{2}-5 mō te x ki tērā atu whārite, 19x-18y=13.
\frac{361}{2}y-95-18y=13
Whakareatia 19 ki te \frac{19y}{2}-5.
\frac{325}{2}y-95=13
Tāpiri \frac{361y}{2} ki te -18y.
\frac{325}{2}y=108
Me tāpiri 95 ki ngā taha e rua o te whārite.
y=\frac{216}{325}
Whakawehea ngā taha e rua o te whārite ki te \frac{325}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{19}{2}\times \frac{216}{325}-5
Whakaurua te \frac{216}{325} mō y ki x=\frac{19}{2}y-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2052}{325}-5
Whakareatia \frac{19}{2} ki te \frac{216}{325} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{427}{325}
Tāpiri -5 ki te \frac{2052}{325}.
x=\frac{427}{325},y=\frac{216}{325}
Kua oti te pūnaha te whakatau.
2x-19y=-10,19x-18y=13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right))\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right))\left(\begin{matrix}-10\\13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-19\\19&-18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right))\left(\begin{matrix}-10\\13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-19\\19&-18\end{matrix}\right))\left(\begin{matrix}-10\\13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{2\left(-18\right)-\left(-19\times 19\right)}&-\frac{-19}{2\left(-18\right)-\left(-19\times 19\right)}\\-\frac{19}{2\left(-18\right)-\left(-19\times 19\right)}&\frac{2}{2\left(-18\right)-\left(-19\times 19\right)}\end{matrix}\right)\left(\begin{matrix}-10\\13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{325}&\frac{19}{325}\\-\frac{19}{325}&\frac{2}{325}\end{matrix}\right)\left(\begin{matrix}-10\\13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{325}\left(-10\right)+\frac{19}{325}\times 13\\-\frac{19}{325}\left(-10\right)+\frac{2}{325}\times 13\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{427}{325}\\\frac{216}{325}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{427}{325},y=\frac{216}{325}
Tangohia ngā huānga poukapa x me y.
2x-19y=-10,19x-18y=13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
19\times 2x+19\left(-19\right)y=19\left(-10\right),2\times 19x+2\left(-18\right)y=2\times 13
Kia ōrite ai a 2x me 19x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 19 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
38x-361y=-190,38x-36y=26
Whakarūnātia.
38x-38x-361y+36y=-190-26
Me tango 38x-36y=26 mai i 38x-361y=-190 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-361y+36y=-190-26
Tāpiri 38x ki te -38x. Ka whakakore atu ngā kupu 38x me -38x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-325y=-190-26
Tāpiri -361y ki te 36y.
-325y=-216
Tāpiri -190 ki te -26.
y=\frac{216}{325}
Whakawehea ngā taha e rua ki te -325.
19x-18\times \frac{216}{325}=13
Whakaurua te \frac{216}{325} mō y ki 19x-18y=13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
19x-\frac{3888}{325}=13
Whakareatia -18 ki te \frac{216}{325}.
19x=\frac{8113}{325}
Me tāpiri \frac{3888}{325} ki ngā taha e rua o te whārite.
x=\frac{427}{325}
Whakawehea ngā taha e rua ki te 19.
x=\frac{427}{325},y=\frac{216}{325}
Kua oti te pūnaha te whakatau.