Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y-7=0,17x-11y-8=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y-7=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x+y=7
Me tāpiri 7 ki ngā taha e rua o te whārite.
2x=-y+7
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+7\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+\frac{7}{2}
Whakareatia \frac{1}{2} ki te -y+7.
17\left(-\frac{1}{2}y+\frac{7}{2}\right)-11y-8=0
Whakakapia te \frac{-y+7}{2} mō te x ki tērā atu whārite, 17x-11y-8=0.
-\frac{17}{2}y+\frac{119}{2}-11y-8=0
Whakareatia 17 ki te \frac{-y+7}{2}.
-\frac{39}{2}y+\frac{119}{2}-8=0
Tāpiri -\frac{17y}{2} ki te -11y.
-\frac{39}{2}y+\frac{103}{2}=0
Tāpiri \frac{119}{2} ki te -8.
-\frac{39}{2}y=-\frac{103}{2}
Me tango \frac{103}{2} mai i ngā taha e rua o te whārite.
y=\frac{103}{39}
Whakawehea ngā taha e rua o te whārite ki te -\frac{39}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times \frac{103}{39}+\frac{7}{2}
Whakaurua te \frac{103}{39} mō y ki x=-\frac{1}{2}y+\frac{7}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{103}{78}+\frac{7}{2}
Whakareatia -\frac{1}{2} ki te \frac{103}{39} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{85}{39}
Tāpiri \frac{7}{2} ki te -\frac{103}{78} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{85}{39},y=\frac{103}{39}
Kua oti te pūnaha te whakatau.
2x+y-7=0,17x-11y-8=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\17&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\17&-11\end{matrix}\right))\left(\begin{matrix}2&1\\17&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\17&-11\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\17&-11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\17&-11\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\17&-11\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{2\left(-11\right)-17}&-\frac{1}{2\left(-11\right)-17}\\-\frac{17}{2\left(-11\right)-17}&\frac{2}{2\left(-11\right)-17}\end{matrix}\right)\left(\begin{matrix}7\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{39}&\frac{1}{39}\\\frac{17}{39}&-\frac{2}{39}\end{matrix}\right)\left(\begin{matrix}7\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{39}\times 7+\frac{1}{39}\times 8\\\frac{17}{39}\times 7-\frac{2}{39}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{85}{39}\\\frac{103}{39}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{85}{39},y=\frac{103}{39}
Tangohia ngā huānga poukapa x me y.
2x+y-7=0,17x-11y-8=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
17\times 2x+17y+17\left(-7\right)=0,2\times 17x+2\left(-11\right)y+2\left(-8\right)=0
Kia ōrite ai a 2x me 17x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 17 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
34x+17y-119=0,34x-22y-16=0
Whakarūnātia.
34x-34x+17y+22y-119+16=0
Me tango 34x-22y-16=0 mai i 34x+17y-119=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
17y+22y-119+16=0
Tāpiri 34x ki te -34x. Ka whakakore atu ngā kupu 34x me -34x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
39y-119+16=0
Tāpiri 17y ki te 22y.
39y-103=0
Tāpiri -119 ki te 16.
39y=103
Me tāpiri 103 ki ngā taha e rua o te whārite.
y=\frac{103}{39}
Whakawehea ngā taha e rua ki te 39.
17x-11\times \frac{103}{39}-8=0
Whakaurua te \frac{103}{39} mō y ki 17x-11y-8=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
17x-\frac{1133}{39}-8=0
Whakareatia -11 ki te \frac{103}{39}.
17x-\frac{1445}{39}=0
Tāpiri -\frac{1133}{39} ki te -8.
17x=\frac{1445}{39}
Me tāpiri \frac{1445}{39} ki ngā taha e rua o te whārite.
x=\frac{85}{39}
Whakawehea ngā taha e rua ki te 17.
x=\frac{85}{39},y=\frac{103}{39}
Kua oti te pūnaha te whakatau.