Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y-3=0,2x-3y-7=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y-3=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x+y=3
Me tāpiri 3 ki ngā taha e rua o te whārite.
2x=-y+3
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+3\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+\frac{3}{2}
Whakareatia \frac{1}{2} ki te -y+3.
2\left(-\frac{1}{2}y+\frac{3}{2}\right)-3y-7=0
Whakakapia te \frac{-y+3}{2} mō te x ki tērā atu whārite, 2x-3y-7=0.
-y+3-3y-7=0
Whakareatia 2 ki te \frac{-y+3}{2}.
-4y+3-7=0
Tāpiri -y ki te -3y.
-4y-4=0
Tāpiri 3 ki te -7.
-4y=4
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -4.
x=-\frac{1}{2}\left(-1\right)+\frac{3}{2}
Whakaurua te -1 mō y ki x=-\frac{1}{2}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1+3}{2}
Whakareatia -\frac{1}{2} ki te -1.
x=2
Tāpiri \frac{3}{2} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-1
Kua oti te pūnaha te whakatau.
2x+y-3=0,2x-3y-7=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\2&-3\end{matrix}\right))\left(\begin{matrix}2&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-3\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-3\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-3\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-2}&-\frac{1}{2\left(-3\right)-2}\\-\frac{2}{2\left(-3\right)-2}&\frac{2}{2\left(-3\right)-2}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&\frac{1}{8}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 3+\frac{1}{8}\times 7\\\frac{1}{4}\times 3-\frac{1}{4}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-1
Tangohia ngā huānga poukapa x me y.
2x+y-3=0,2x-3y-7=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-2x+y+3y-3+7=0
Me tango 2x-3y-7=0 mai i 2x+y-3=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+3y-3+7=0
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4y-3+7=0
Tāpiri y ki te 3y.
4y+4=0
Tāpiri -3 ki te 7.
4y=-4
Me tango 4 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 4.
2x-3\left(-1\right)-7=0
Whakaurua te -1 mō y ki 2x-3y-7=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+3-7=0
Whakareatia -3 ki te -1.
2x-4=0
Tāpiri 3 ki te -7.
2x=4
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 2.
x=2,y=-1
Kua oti te pūnaha te whakatau.