Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y=8,x-2y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+8
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+8\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+4
Whakareatia \frac{1}{2} ki te -y+8.
-\frac{1}{2}y+4-2y=-1
Whakakapia te -\frac{y}{2}+4 mō te x ki tērā atu whārite, x-2y=-1.
-\frac{5}{2}y+4=-1
Tāpiri -\frac{y}{2} ki te -2y.
-\frac{5}{2}y=-5
Me tango 4 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times 2+4
Whakaurua te 2 mō y ki x=-\frac{1}{2}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+4
Whakareatia -\frac{1}{2} ki te 2.
x=3
Tāpiri 4 ki te -1.
x=3,y=2
Kua oti te pūnaha te whakatau.
2x+y=8,x-2y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}2&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-1}&-\frac{1}{2\left(-2\right)-1}\\-\frac{1}{2\left(-2\right)-1}&\frac{2}{2\left(-2\right)-1}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 8+\frac{1}{5}\left(-1\right)\\\frac{1}{5}\times 8-\frac{2}{5}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=2
Tangohia ngā huānga poukapa x me y.
2x+y=8,x-2y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+y=8,2x+2\left(-2\right)y=2\left(-1\right)
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+y=8,2x-4y=-2
Whakarūnātia.
2x-2x+y+4y=8+2
Me tango 2x-4y=-2 mai i 2x+y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+4y=8+2
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=8+2
Tāpiri y ki te 4y.
5y=10
Tāpiri 8 ki te 2.
y=2
Whakawehea ngā taha e rua ki te 5.
x-2\times 2=-1
Whakaurua te 2 mō y ki x-2y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-4=-1
Whakareatia -2 ki te 2.
x=3
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=3,y=2
Kua oti te pūnaha te whakatau.