Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y=6,6x-y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+6
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+6\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+3
Whakareatia \frac{1}{2} ki te -y+6.
6\left(-\frac{1}{2}y+3\right)-y=2
Whakakapia te -\frac{y}{2}+3 mō te x ki tērā atu whārite, 6x-y=2.
-3y+18-y=2
Whakareatia 6 ki te -\frac{y}{2}+3.
-4y+18=2
Tāpiri -3y ki te -y.
-4y=-16
Me tango 18 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te -4.
x=-\frac{1}{2}\times 4+3
Whakaurua te 4 mō y ki x=-\frac{1}{2}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2+3
Whakareatia -\frac{1}{2} ki te 4.
x=1
Tāpiri 3 ki te -2.
x=1,y=4
Kua oti te pūnaha te whakatau.
2x+y=6,6x-y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\6&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-6}&-\frac{1}{2\left(-1\right)-6}\\-\frac{6}{2\left(-1\right)-6}&\frac{2}{2\left(-1\right)-6}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{1}{8}\times 2\\\frac{3}{4}\times 6-\frac{1}{4}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=4
Tangohia ngā huānga poukapa x me y.
2x+y=6,6x-y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 2x+6y=6\times 6,2\times 6x+2\left(-1\right)y=2\times 2
Kia ōrite ai a 2x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
12x+6y=36,12x-2y=4
Whakarūnātia.
12x-12x+6y+2y=36-4
Me tango 12x-2y=4 mai i 12x+6y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y+2y=36-4
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=36-4
Tāpiri 6y ki te 2y.
8y=32
Tāpiri 36 ki te -4.
y=4
Whakawehea ngā taha e rua ki te 8.
6x-4=2
Whakaurua te 4 mō y ki 6x-y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x=6
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 6.
x=1,y=4
Kua oti te pūnaha te whakatau.