Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y=5,2x-y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+5
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+5\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+\frac{5}{2}
Whakareatia \frac{1}{2} ki te -y+5.
2\left(-\frac{1}{2}y+\frac{5}{2}\right)-y=5
Whakakapia te \frac{-y+5}{2} mō te x ki tērā atu whārite, 2x-y=5.
-y+5-y=5
Whakareatia 2 ki te \frac{-y+5}{2}.
-2y+5=5
Tāpiri -y ki te -y.
-2y=0
Me tango 5 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te -2.
x=\frac{5}{2}
Whakaurua te 0 mō y ki x=-\frac{1}{2}y+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{2},y=0
Kua oti te pūnaha te whakatau.
2x+y=5,2x-y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}2&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-2}&-\frac{1}{2\left(-1\right)-2}\\-\frac{2}{2\left(-1\right)-2}&\frac{2}{2\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5+\frac{1}{4}\times 5\\\frac{1}{2}\times 5-\frac{1}{2}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{2},y=0
Tangohia ngā huānga poukapa x me y.
2x+y=5,2x-y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-2x+y+y=5-5
Me tango 2x-y=5 mai i 2x+y=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+y=5-5
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=5-5
Tāpiri y ki te y.
2y=0
Tāpiri 5 ki te -5.
y=0
Whakawehea ngā taha e rua ki te 2.
2x=5
Whakaurua te 0 mō y ki 2x-y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{5}{2},y=0
Kua oti te pūnaha te whakatau.