Whakaoti mō x, y
x = \frac{155}{7} = 22\frac{1}{7} \approx 22.142857143
y=\frac{5}{7}\approx 0.714285714
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+y=45,3x+5y=70
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=45
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+45
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+45\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+\frac{45}{2}
Whakareatia \frac{1}{2} ki te -y+45.
3\left(-\frac{1}{2}y+\frac{45}{2}\right)+5y=70
Whakakapia te \frac{-y+45}{2} mō te x ki tērā atu whārite, 3x+5y=70.
-\frac{3}{2}y+\frac{135}{2}+5y=70
Whakareatia 3 ki te \frac{-y+45}{2}.
\frac{7}{2}y+\frac{135}{2}=70
Tāpiri -\frac{3y}{2} ki te 5y.
\frac{7}{2}y=\frac{5}{2}
Me tango \frac{135}{2} mai i ngā taha e rua o te whārite.
y=\frac{5}{7}
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times \frac{5}{7}+\frac{45}{2}
Whakaurua te \frac{5}{7} mō y ki x=-\frac{1}{2}y+\frac{45}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{5}{14}+\frac{45}{2}
Whakareatia -\frac{1}{2} ki te \frac{5}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{155}{7}
Tāpiri \frac{45}{2} ki te -\frac{5}{14} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{155}{7},y=\frac{5}{7}
Kua oti te pūnaha te whakatau.
2x+y=45,3x+5y=70
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\70\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\3&5\end{matrix}\right))\left(\begin{matrix}2&1\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&5\end{matrix}\right))\left(\begin{matrix}45\\70\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&5\end{matrix}\right))\left(\begin{matrix}45\\70\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&5\end{matrix}\right))\left(\begin{matrix}45\\70\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-3}&-\frac{1}{2\times 5-3}\\-\frac{3}{2\times 5-3}&\frac{2}{2\times 5-3}\end{matrix}\right)\left(\begin{matrix}45\\70\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&-\frac{1}{7}\\-\frac{3}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}45\\70\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\times 45-\frac{1}{7}\times 70\\-\frac{3}{7}\times 45+\frac{2}{7}\times 70\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{155}{7}\\\frac{5}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{155}{7},y=\frac{5}{7}
Tangohia ngā huānga poukapa x me y.
2x+y=45,3x+5y=70
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3y=3\times 45,2\times 3x+2\times 5y=2\times 70
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+3y=135,6x+10y=140
Whakarūnātia.
6x-6x+3y-10y=135-140
Me tango 6x+10y=140 mai i 6x+3y=135 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-10y=135-140
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=135-140
Tāpiri 3y ki te -10y.
-7y=-5
Tāpiri 135 ki te -140.
y=\frac{5}{7}
Whakawehea ngā taha e rua ki te -7.
3x+5\times \frac{5}{7}=70
Whakaurua te \frac{5}{7} mō y ki 3x+5y=70. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+\frac{25}{7}=70
Whakareatia 5 ki te \frac{5}{7}.
3x=\frac{465}{7}
Me tango \frac{25}{7} mai i ngā taha e rua o te whārite.
x=\frac{155}{7}
Whakawehea ngā taha e rua ki te 3.
x=\frac{155}{7},y=\frac{5}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}