Whakaoti mō x, y
x=8
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+y=18,3x+2y=28
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+18
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+18\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+9
Whakareatia \frac{1}{2} ki te -y+18.
3\left(-\frac{1}{2}y+9\right)+2y=28
Whakakapia te -\frac{y}{2}+9 mō te x ki tērā atu whārite, 3x+2y=28.
-\frac{3}{2}y+27+2y=28
Whakareatia 3 ki te -\frac{y}{2}+9.
\frac{1}{2}y+27=28
Tāpiri -\frac{3y}{2} ki te 2y.
\frac{1}{2}y=1
Me tango 27 mai i ngā taha e rua o te whārite.
y=2
Me whakarea ngā taha e rua ki te 2.
x=-\frac{1}{2}\times 2+9
Whakaurua te 2 mō y ki x=-\frac{1}{2}y+9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+9
Whakareatia -\frac{1}{2} ki te 2.
x=8
Tāpiri 9 ki te -1.
x=8,y=2
Kua oti te pūnaha te whakatau.
2x+y=18,3x+2y=28
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\28\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}2&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}18\\28\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}18\\28\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}18\\28\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3}&-\frac{1}{2\times 2-3}\\-\frac{3}{2\times 2-3}&\frac{2}{2\times 2-3}\end{matrix}\right)\left(\begin{matrix}18\\28\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\-3&2\end{matrix}\right)\left(\begin{matrix}18\\28\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 18-28\\-3\times 18+2\times 28\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=8,y=2
Tangohia ngā huānga poukapa x me y.
2x+y=18,3x+2y=28
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3y=3\times 18,2\times 3x+2\times 2y=2\times 28
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+3y=54,6x+4y=56
Whakarūnātia.
6x-6x+3y-4y=54-56
Me tango 6x+4y=56 mai i 6x+3y=54 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-4y=54-56
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=54-56
Tāpiri 3y ki te -4y.
-y=-2
Tāpiri 54 ki te -56.
y=2
Whakawehea ngā taha e rua ki te -1.
3x+2\times 2=28
Whakaurua te 2 mō y ki 3x+2y=28. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+4=28
Whakareatia 2 ki te 2.
3x=24
Me tango 4 mai i ngā taha e rua o te whārite.
x=8
Whakawehea ngā taha e rua ki te 3.
x=8,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}