Whakaoti mō x, y
x=6
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+y=17,5x-5y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+17
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+17\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+\frac{17}{2}
Whakareatia \frac{1}{2} ki te -y+17.
5\left(-\frac{1}{2}y+\frac{17}{2}\right)-5y=5
Whakakapia te \frac{-y+17}{2} mō te x ki tērā atu whārite, 5x-5y=5.
-\frac{5}{2}y+\frac{85}{2}-5y=5
Whakareatia 5 ki te \frac{-y+17}{2}.
-\frac{15}{2}y+\frac{85}{2}=5
Tāpiri -\frac{5y}{2} ki te -5y.
-\frac{15}{2}y=-\frac{75}{2}
Me tango \frac{85}{2} mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te -\frac{15}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times 5+\frac{17}{2}
Whakaurua te 5 mō y ki x=-\frac{1}{2}y+\frac{17}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-5+17}{2}
Whakareatia -\frac{1}{2} ki te 5.
x=6
Tāpiri \frac{17}{2} ki te -\frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=6,y=5
Kua oti te pūnaha te whakatau.
2x+y=17,5x-5y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\5&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\5&-5\end{matrix}\right))\left(\begin{matrix}2&1\\5&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&-5\end{matrix}\right))\left(\begin{matrix}17\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\5&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&-5\end{matrix}\right))\left(\begin{matrix}17\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&-5\end{matrix}\right))\left(\begin{matrix}17\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-5}&-\frac{1}{2\left(-5\right)-5}\\-\frac{5}{2\left(-5\right)-5}&\frac{2}{2\left(-5\right)-5}\end{matrix}\right)\left(\begin{matrix}17\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{15}\\\frac{1}{3}&-\frac{2}{15}\end{matrix}\right)\left(\begin{matrix}17\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 17+\frac{1}{15}\times 5\\\frac{1}{3}\times 17-\frac{2}{15}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=5
Tangohia ngā huānga poukapa x me y.
2x+y=17,5x-5y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2x+5y=5\times 17,2\times 5x+2\left(-5\right)y=2\times 5
Kia ōrite ai a 2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10x+5y=85,10x-10y=10
Whakarūnātia.
10x-10x+5y+10y=85-10
Me tango 10x-10y=10 mai i 10x+5y=85 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y+10y=85-10
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
15y=85-10
Tāpiri 5y ki te 10y.
15y=75
Tāpiri 85 ki te -10.
y=5
Whakawehea ngā taha e rua ki te 15.
5x-5\times 5=5
Whakaurua te 5 mō y ki 5x-5y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-25=5
Whakareatia -5 ki te 5.
5x=30
Me tāpiri 25 ki ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te 5.
x=6,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}