Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y=12,3x-2y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+12
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+12\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+6
Whakareatia \frac{1}{2} ki te -y+12.
3\left(-\frac{1}{2}y+6\right)-2y=8
Whakakapia te -\frac{y}{2}+6 mō te x ki tērā atu whārite, 3x-2y=8.
-\frac{3}{2}y+18-2y=8
Whakareatia 3 ki te -\frac{y}{2}+6.
-\frac{7}{2}y+18=8
Tāpiri -\frac{3y}{2} ki te -2y.
-\frac{7}{2}y=-10
Me tango 18 mai i ngā taha e rua o te whārite.
y=\frac{20}{7}
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times \frac{20}{7}+6
Whakaurua te \frac{20}{7} mō y ki x=-\frac{1}{2}y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{10}{7}+6
Whakareatia -\frac{1}{2} ki te \frac{20}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{32}{7}
Tāpiri 6 ki te -\frac{10}{7}.
x=\frac{32}{7},y=\frac{20}{7}
Kua oti te pūnaha te whakatau.
2x+y=12,3x-2y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\3&-2\end{matrix}\right))\left(\begin{matrix}2&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-2\end{matrix}\right))\left(\begin{matrix}12\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-2\end{matrix}\right))\left(\begin{matrix}12\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-2\end{matrix}\right))\left(\begin{matrix}12\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3}&-\frac{1}{2\left(-2\right)-3}\\-\frac{3}{2\left(-2\right)-3}&\frac{2}{2\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}12\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{7}\\\frac{3}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}12\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 12+\frac{1}{7}\times 8\\\frac{3}{7}\times 12-\frac{2}{7}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{32}{7}\\\frac{20}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{32}{7},y=\frac{20}{7}
Tangohia ngā huānga poukapa x me y.
2x+y=12,3x-2y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3y=3\times 12,2\times 3x+2\left(-2\right)y=2\times 8
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+3y=36,6x-4y=16
Whakarūnātia.
6x-6x+3y+4y=36-16
Me tango 6x-4y=16 mai i 6x+3y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+4y=36-16
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=36-16
Tāpiri 3y ki te 4y.
7y=20
Tāpiri 36 ki te -16.
y=\frac{20}{7}
Whakawehea ngā taha e rua ki te 7.
3x-2\times \frac{20}{7}=8
Whakaurua te \frac{20}{7} mō y ki 3x-2y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-\frac{40}{7}=8
Whakareatia -2 ki te \frac{20}{7}.
3x=\frac{96}{7}
Me tāpiri \frac{40}{7} ki ngā taha e rua o te whārite.
x=\frac{32}{7}
Whakawehea ngā taha e rua ki te 3.
x=\frac{32}{7},y=\frac{20}{7}
Kua oti te pūnaha te whakatau.