Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y=11,3x-y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+11
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+11\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+\frac{11}{2}
Whakareatia \frac{1}{2} ki te -y+11.
3\left(-\frac{1}{2}y+\frac{11}{2}\right)-y=9
Whakakapia te \frac{-y+11}{2} mō te x ki tērā atu whārite, 3x-y=9.
-\frac{3}{2}y+\frac{33}{2}-y=9
Whakareatia 3 ki te \frac{-y+11}{2}.
-\frac{5}{2}y+\frac{33}{2}=9
Tāpiri -\frac{3y}{2} ki te -y.
-\frac{5}{2}y=-\frac{15}{2}
Me tango \frac{33}{2} mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times 3+\frac{11}{2}
Whakaurua te 3 mō y ki x=-\frac{1}{2}y+\frac{11}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-3+11}{2}
Whakareatia -\frac{1}{2} ki te 3.
x=4
Tāpiri \frac{11}{2} ki te -\frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=3
Kua oti te pūnaha te whakatau.
2x+y=11,3x-y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3}&-\frac{1}{2\left(-1\right)-3}\\-\frac{3}{2\left(-1\right)-3}&\frac{2}{2\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 11+\frac{1}{5}\times 9\\\frac{3}{5}\times 11-\frac{2}{5}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=3
Tangohia ngā huānga poukapa x me y.
2x+y=11,3x-y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3y=3\times 11,2\times 3x+2\left(-1\right)y=2\times 9
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+3y=33,6x-2y=18
Whakarūnātia.
6x-6x+3y+2y=33-18
Me tango 6x-2y=18 mai i 6x+3y=33 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+2y=33-18
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=33-18
Tāpiri 3y ki te 2y.
5y=15
Tāpiri 33 ki te -18.
y=3
Whakawehea ngā taha e rua ki te 5.
3x-3=9
Whakaurua te 3 mō y ki 3x-y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=12
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 3.
x=4,y=3
Kua oti te pūnaha te whakatau.