Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y=-19,x+4y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=-19
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y-19
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y-19\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y-\frac{19}{2}
Whakareatia \frac{1}{2} ki te -y-19.
-\frac{1}{2}y-\frac{19}{2}+4y=11
Whakakapia te \frac{-y-19}{2} mō te x ki tērā atu whārite, x+4y=11.
\frac{7}{2}y-\frac{19}{2}=11
Tāpiri -\frac{y}{2} ki te 4y.
\frac{7}{2}y=\frac{41}{2}
Me tāpiri \frac{19}{2} ki ngā taha e rua o te whārite.
y=\frac{41}{7}
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times \frac{41}{7}-\frac{19}{2}
Whakaurua te \frac{41}{7} mō y ki x=-\frac{1}{2}y-\frac{19}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{41}{14}-\frac{19}{2}
Whakareatia -\frac{1}{2} ki te \frac{41}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{87}{7}
Tāpiri -\frac{19}{2} ki te -\frac{41}{14} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{87}{7},y=\frac{41}{7}
Kua oti te pūnaha te whakatau.
2x+y=-19,x+4y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-19\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\1&4\end{matrix}\right))\left(\begin{matrix}2&1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&4\end{matrix}\right))\left(\begin{matrix}-19\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&4\end{matrix}\right))\left(\begin{matrix}-19\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&4\end{matrix}\right))\left(\begin{matrix}-19\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-1}&-\frac{1}{2\times 4-1}\\-\frac{1}{2\times 4-1}&\frac{2}{2\times 4-1}\end{matrix}\right)\left(\begin{matrix}-19\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&-\frac{1}{7}\\-\frac{1}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}-19\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\left(-19\right)-\frac{1}{7}\times 11\\-\frac{1}{7}\left(-19\right)+\frac{2}{7}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{87}{7}\\\frac{41}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{87}{7},y=\frac{41}{7}
Tangohia ngā huānga poukapa x me y.
2x+y=-19,x+4y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+y=-19,2x+2\times 4y=2\times 11
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+y=-19,2x+8y=22
Whakarūnātia.
2x-2x+y-8y=-19-22
Me tango 2x+8y=22 mai i 2x+y=-19 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-8y=-19-22
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=-19-22
Tāpiri y ki te -8y.
-7y=-41
Tāpiri -19 ki te -22.
y=\frac{41}{7}
Whakawehea ngā taha e rua ki te -7.
x+4\times \frac{41}{7}=11
Whakaurua te \frac{41}{7} mō y ki x+4y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{164}{7}=11
Whakareatia 4 ki te \frac{41}{7}.
x=-\frac{87}{7}
Me tango \frac{164}{7} mai i ngā taha e rua o te whārite.
x=-\frac{87}{7},y=\frac{41}{7}
Kua oti te pūnaha te whakatau.