Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y=-16,-4x+10y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=-16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y-16
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y-16\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y-8
Whakareatia \frac{1}{2} ki te -y-16.
-4\left(-\frac{1}{2}y-8\right)+10y=8
Whakakapia te -\frac{y}{2}-8 mō te x ki tērā atu whārite, -4x+10y=8.
2y+32+10y=8
Whakareatia -4 ki te -\frac{y}{2}-8.
12y+32=8
Tāpiri 2y ki te 10y.
12y=-24
Me tango 32 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te 12.
x=-\frac{1}{2}\left(-2\right)-8
Whakaurua te -2 mō y ki x=-\frac{1}{2}y-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1-8
Whakareatia -\frac{1}{2} ki te -2.
x=-7
Tāpiri -8 ki te 1.
x=-7,y=-2
Kua oti te pūnaha te whakatau.
2x+y=-16,-4x+10y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\-4&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\-4&10\end{matrix}\right))\left(\begin{matrix}2&1\\-4&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&10\end{matrix}\right))\left(\begin{matrix}-16\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\-4&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&10\end{matrix}\right))\left(\begin{matrix}-16\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&10\end{matrix}\right))\left(\begin{matrix}-16\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{2\times 10-\left(-4\right)}&-\frac{1}{2\times 10-\left(-4\right)}\\-\frac{-4}{2\times 10-\left(-4\right)}&\frac{2}{2\times 10-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-16\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}&-\frac{1}{24}\\\frac{1}{6}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}-16\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}\left(-16\right)-\frac{1}{24}\times 8\\\frac{1}{6}\left(-16\right)+\frac{1}{12}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-7,y=-2
Tangohia ngā huānga poukapa x me y.
2x+y=-16,-4x+10y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 2x-4y=-4\left(-16\right),2\left(-4\right)x+2\times 10y=2\times 8
Kia ōrite ai a 2x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-8x-4y=64,-8x+20y=16
Whakarūnātia.
-8x+8x-4y-20y=64-16
Me tango -8x+20y=16 mai i -8x-4y=64 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-20y=64-16
Tāpiri -8x ki te 8x. Ka whakakore atu ngā kupu -8x me 8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-24y=64-16
Tāpiri -4y ki te -20y.
-24y=48
Tāpiri 64 ki te -16.
y=-2
Whakawehea ngā taha e rua ki te -24.
-4x+10\left(-2\right)=8
Whakaurua te -2 mō y ki -4x+10y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x-20=8
Whakareatia 10 ki te -2.
-4x=28
Me tāpiri 20 ki ngā taha e rua o te whārite.
x=-7
Whakawehea ngā taha e rua ki te -4.
x=-7,y=-2
Kua oti te pūnaha te whakatau.