Whakaoti mō x, y, z
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
y = \frac{5}{2} = 2\frac{1}{2} = 2.5
z = \frac{5}{2} = 2\frac{1}{2} = 2.5
Tohaina
Kua tāruatia ki te papatopenga
y=-2x-z+12
Me whakaoti te 2x+y+z=12 mō y.
2x-\left(-2x-z+12\right)+z=7 x+2\left(-2x-z+12\right)-z=6
Whakakapia te -2x-z+12 mō te y i te whārite tuarua me te tuatoru.
x=-\frac{1}{2}z+\frac{19}{4} z=6-x
Me whakaoti ēnei whārite mō x me z takitahi.
z=6-\left(-\frac{1}{2}z+\frac{19}{4}\right)
Whakakapia te -\frac{1}{2}z+\frac{19}{4} mō te x i te whārite z=6-x.
z=\frac{5}{2}
Me whakaoti te z=6-\left(-\frac{1}{2}z+\frac{19}{4}\right) mō z.
x=-\frac{1}{2}\times \frac{5}{2}+\frac{19}{4}
Whakakapia te \frac{5}{2} mō te z i te whārite x=-\frac{1}{2}z+\frac{19}{4}.
x=\frac{7}{2}
Tātaitia te x i te x=-\frac{1}{2}\times \frac{5}{2}+\frac{19}{4}.
y=-2\times \frac{7}{2}-\frac{5}{2}+12
Whakakapia te \frac{7}{2} mō te x me te \frac{5}{2} mō z i te whārite y=-2x-z+12.
y=\frac{5}{2}
Tātaitia te y i te y=-2\times \frac{7}{2}-\frac{5}{2}+12.
x=\frac{7}{2} y=\frac{5}{2} z=\frac{5}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}