Whakaoti mō x, y
x=0
y=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+8y=64,7x+y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+8y=64
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-8y+64
Me tango 8y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-8y+64\right)
Whakawehea ngā taha e rua ki te 2.
x=-4y+32
Whakareatia \frac{1}{2} ki te -8y+64.
7\left(-4y+32\right)+y=8
Whakakapia te -4y+32 mō te x ki tērā atu whārite, 7x+y=8.
-28y+224+y=8
Whakareatia 7 ki te -4y+32.
-27y+224=8
Tāpiri -28y ki te y.
-27y=-216
Me tango 224 mai i ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua ki te -27.
x=-4\times 8+32
Whakaurua te 8 mō y ki x=-4y+32. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-32+32
Whakareatia -4 ki te 8.
x=0
Tāpiri 32 ki te -32.
x=0,y=8
Kua oti te pūnaha te whakatau.
2x+8y=64,7x+y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&8\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&8\\7&1\end{matrix}\right))\left(\begin{matrix}2&8\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\7&1\end{matrix}\right))\left(\begin{matrix}64\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&8\\7&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\7&1\end{matrix}\right))\left(\begin{matrix}64\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\7&1\end{matrix}\right))\left(\begin{matrix}64\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-8\times 7}&-\frac{8}{2-8\times 7}\\-\frac{7}{2-8\times 7}&\frac{2}{2-8\times 7}\end{matrix}\right)\left(\begin{matrix}64\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{54}&\frac{4}{27}\\\frac{7}{54}&-\frac{1}{27}\end{matrix}\right)\left(\begin{matrix}64\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{54}\times 64+\frac{4}{27}\times 8\\\frac{7}{54}\times 64-\frac{1}{27}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\8\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=8
Tangohia ngā huānga poukapa x me y.
2x+8y=64,7x+y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 2x+7\times 8y=7\times 64,2\times 7x+2y=2\times 8
Kia ōrite ai a 2x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
14x+56y=448,14x+2y=16
Whakarūnātia.
14x-14x+56y-2y=448-16
Me tango 14x+2y=16 mai i 14x+56y=448 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
56y-2y=448-16
Tāpiri 14x ki te -14x. Ka whakakore atu ngā kupu 14x me -14x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
54y=448-16
Tāpiri 56y ki te -2y.
54y=432
Tāpiri 448 ki te -16.
y=8
Whakawehea ngā taha e rua ki te 54.
7x+8=8
Whakaurua te 8 mō y ki 7x+y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x=0
Me tango 8 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 7.
x=0,y=8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}