Whakaoti mō x, y
x = -\frac{8}{5} = -1\frac{3}{5} = -1.6
y = \frac{18}{5} = 3\frac{3}{5} = 3.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+7y=22,2x-3y=-14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+7y=22
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-7y+22
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-7y+22\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{7}{2}y+11
Whakareatia \frac{1}{2} ki te -7y+22.
2\left(-\frac{7}{2}y+11\right)-3y=-14
Whakakapia te -\frac{7y}{2}+11 mō te x ki tērā atu whārite, 2x-3y=-14.
-7y+22-3y=-14
Whakareatia 2 ki te -\frac{7y}{2}+11.
-10y+22=-14
Tāpiri -7y ki te -3y.
-10y=-36
Me tango 22 mai i ngā taha e rua o te whārite.
y=\frac{18}{5}
Whakawehea ngā taha e rua ki te -10.
x=-\frac{7}{2}\times \frac{18}{5}+11
Whakaurua te \frac{18}{5} mō y ki x=-\frac{7}{2}y+11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{63}{5}+11
Whakareatia -\frac{7}{2} ki te \frac{18}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{8}{5}
Tāpiri 11 ki te -\frac{63}{5}.
x=-\frac{8}{5},y=\frac{18}{5}
Kua oti te pūnaha te whakatau.
2x+7y=22,2x-3y=-14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&7\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\-14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&7\\2&-3\end{matrix}\right))\left(\begin{matrix}2&7\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\2&-3\end{matrix}\right))\left(\begin{matrix}22\\-14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&7\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\2&-3\end{matrix}\right))\left(\begin{matrix}22\\-14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\2&-3\end{matrix}\right))\left(\begin{matrix}22\\-14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-7\times 2}&-\frac{7}{2\left(-3\right)-7\times 2}\\-\frac{2}{2\left(-3\right)-7\times 2}&\frac{2}{2\left(-3\right)-7\times 2}\end{matrix}\right)\left(\begin{matrix}22\\-14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}&\frac{7}{20}\\\frac{1}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}22\\-14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}\times 22+\frac{7}{20}\left(-14\right)\\\frac{1}{10}\times 22-\frac{1}{10}\left(-14\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{5}\\\frac{18}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{8}{5},y=\frac{18}{5}
Tangohia ngā huānga poukapa x me y.
2x+7y=22,2x-3y=-14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-2x+7y+3y=22+14
Me tango 2x-3y=-14 mai i 2x+7y=22 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7y+3y=22+14
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10y=22+14
Tāpiri 7y ki te 3y.
10y=36
Tāpiri 22 ki te 14.
y=\frac{18}{5}
Whakawehea ngā taha e rua ki te 10.
2x-3\times \frac{18}{5}=-14
Whakaurua te \frac{18}{5} mō y ki 2x-3y=-14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-\frac{54}{5}=-14
Whakareatia -3 ki te \frac{18}{5}.
2x=-\frac{16}{5}
Me tāpiri \frac{54}{5} ki ngā taha e rua o te whārite.
x=-\frac{8}{5}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{8}{5},y=\frac{18}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}