Whakaoti mō x, y
x=-4
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+5y=7,-3x+y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+5y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-5y+7
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-5y+7\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}y+\frac{7}{2}
Whakareatia \frac{1}{2} ki te -5y+7.
-3\left(-\frac{5}{2}y+\frac{7}{2}\right)+y=15
Whakakapia te \frac{-5y+7}{2} mō te x ki tērā atu whārite, -3x+y=15.
\frac{15}{2}y-\frac{21}{2}+y=15
Whakareatia -3 ki te \frac{-5y+7}{2}.
\frac{17}{2}y-\frac{21}{2}=15
Tāpiri \frac{15y}{2} ki te y.
\frac{17}{2}y=\frac{51}{2}
Me tāpiri \frac{21}{2} ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{17}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{2}\times 3+\frac{7}{2}
Whakaurua te 3 mō y ki x=-\frac{5}{2}y+\frac{7}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-15+7}{2}
Whakareatia -\frac{5}{2} ki te 3.
x=-4
Tāpiri \frac{7}{2} ki te -\frac{15}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-4,y=3
Kua oti te pūnaha te whakatau.
2x+5y=7,-3x+y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&5\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&5\\-3&1\end{matrix}\right))\left(\begin{matrix}2&5\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-3&1\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&5\\-3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-3&1\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-3&1\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-5\left(-3\right)}&-\frac{5}{2-5\left(-3\right)}\\-\frac{-3}{2-5\left(-3\right)}&\frac{2}{2-5\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}7\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&-\frac{5}{17}\\\frac{3}{17}&\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}7\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\times 7-\frac{5}{17}\times 15\\\frac{3}{17}\times 7+\frac{2}{17}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=3
Tangohia ngā huānga poukapa x me y.
2x+5y=7,-3x+y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 2x-3\times 5y=-3\times 7,2\left(-3\right)x+2y=2\times 15
Kia ōrite ai a 2x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-6x-15y=-21,-6x+2y=30
Whakarūnātia.
-6x+6x-15y-2y=-21-30
Me tango -6x+2y=30 mai i -6x-15y=-21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-15y-2y=-21-30
Tāpiri -6x ki te 6x. Ka whakakore atu ngā kupu -6x me 6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-17y=-21-30
Tāpiri -15y ki te -2y.
-17y=-51
Tāpiri -21 ki te -30.
y=3
Whakawehea ngā taha e rua ki te -17.
-3x+3=15
Whakaurua te 3 mō y ki -3x+y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x=12
Me tango 3 mai i ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te -3.
x=-4,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}