Whakaoti mō x, y
x=-1
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+5y=3,3x-2y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+5y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-5y+3
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-5y+3\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}y+\frac{3}{2}
Whakareatia \frac{1}{2} ki te -5y+3.
3\left(-\frac{5}{2}y+\frac{3}{2}\right)-2y=-5
Whakakapia te \frac{-5y+3}{2} mō te x ki tērā atu whārite, 3x-2y=-5.
-\frac{15}{2}y+\frac{9}{2}-2y=-5
Whakareatia 3 ki te \frac{-5y+3}{2}.
-\frac{19}{2}y+\frac{9}{2}=-5
Tāpiri -\frac{15y}{2} ki te -2y.
-\frac{19}{2}y=-\frac{19}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{19}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-5+3}{2}
Whakaurua te 1 mō y ki x=-\frac{5}{2}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1
Tāpiri \frac{3}{2} ki te -\frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=1
Kua oti te pūnaha te whakatau.
2x+5y=3,3x-2y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}2&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}3\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&5\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}3\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}3\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-5\times 3}&-\frac{5}{2\left(-2\right)-5\times 3}\\-\frac{3}{2\left(-2\right)-5\times 3}&\frac{2}{2\left(-2\right)-5\times 3}\end{matrix}\right)\left(\begin{matrix}3\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{5}{19}\\\frac{3}{19}&-\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}3\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 3+\frac{5}{19}\left(-5\right)\\\frac{3}{19}\times 3-\frac{2}{19}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=1
Tangohia ngā huānga poukapa x me y.
2x+5y=3,3x-2y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 5y=3\times 3,2\times 3x+2\left(-2\right)y=2\left(-5\right)
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+15y=9,6x-4y=-10
Whakarūnātia.
6x-6x+15y+4y=9+10
Me tango 6x-4y=-10 mai i 6x+15y=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y+4y=9+10
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
19y=9+10
Tāpiri 15y ki te 4y.
19y=19
Tāpiri 9 ki te 10.
y=1
Whakawehea ngā taha e rua ki te 19.
3x-2=-5
Whakaurua te 1 mō y ki 3x-2y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=-3
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 3.
x=-1,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}