Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6y+5x=6
Whakaarohia te whārite tuarua. Me tāpiri te 5x ki ngā taha e rua.
2x+5y=17,5x+6y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+5y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-5y+17
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-5y+17\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}y+\frac{17}{2}
Whakareatia \frac{1}{2} ki te -5y+17.
5\left(-\frac{5}{2}y+\frac{17}{2}\right)+6y=6
Whakakapia te \frac{-5y+17}{2} mō te x ki tērā atu whārite, 5x+6y=6.
-\frac{25}{2}y+\frac{85}{2}+6y=6
Whakareatia 5 ki te \frac{-5y+17}{2}.
-\frac{13}{2}y+\frac{85}{2}=6
Tāpiri -\frac{25y}{2} ki te 6y.
-\frac{13}{2}y=-\frac{73}{2}
Me tango \frac{85}{2} mai i ngā taha e rua o te whārite.
y=\frac{73}{13}
Whakawehea ngā taha e rua o te whārite ki te -\frac{13}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{2}\times \frac{73}{13}+\frac{17}{2}
Whakaurua te \frac{73}{13} mō y ki x=-\frac{5}{2}y+\frac{17}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{365}{26}+\frac{17}{2}
Whakareatia -\frac{5}{2} ki te \frac{73}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{72}{13}
Tāpiri \frac{17}{2} ki te -\frac{365}{26} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{72}{13},y=\frac{73}{13}
Kua oti te pūnaha te whakatau.
6y+5x=6
Whakaarohia te whārite tuarua. Me tāpiri te 5x ki ngā taha e rua.
2x+5y=17,5x+6y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&5\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&5\\5&6\end{matrix}\right))\left(\begin{matrix}2&5\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\5&6\end{matrix}\right))\left(\begin{matrix}17\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&5\\5&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\5&6\end{matrix}\right))\left(\begin{matrix}17\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\5&6\end{matrix}\right))\left(\begin{matrix}17\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-5\times 5}&-\frac{5}{2\times 6-5\times 5}\\-\frac{5}{2\times 6-5\times 5}&\frac{2}{2\times 6-5\times 5}\end{matrix}\right)\left(\begin{matrix}17\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{13}&\frac{5}{13}\\\frac{5}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}17\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{13}\times 17+\frac{5}{13}\times 6\\\frac{5}{13}\times 17-\frac{2}{13}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{72}{13}\\\frac{73}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{72}{13},y=\frac{73}{13}
Tangohia ngā huānga poukapa x me y.
6y+5x=6
Whakaarohia te whārite tuarua. Me tāpiri te 5x ki ngā taha e rua.
2x+5y=17,5x+6y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2x+5\times 5y=5\times 17,2\times 5x+2\times 6y=2\times 6
Kia ōrite ai a 2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10x+25y=85,10x+12y=12
Whakarūnātia.
10x-10x+25y-12y=85-12
Me tango 10x+12y=12 mai i 10x+25y=85 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25y-12y=85-12
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
13y=85-12
Tāpiri 25y ki te -12y.
13y=73
Tāpiri 85 ki te -12.
y=\frac{73}{13}
Whakawehea ngā taha e rua ki te 13.
5x+6\times \frac{73}{13}=6
Whakaurua te \frac{73}{13} mō y ki 5x+6y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+\frac{438}{13}=6
Whakareatia 6 ki te \frac{73}{13}.
5x=-\frac{360}{13}
Me tango \frac{438}{13} mai i ngā taha e rua o te whārite.
x=-\frac{72}{13}
Whakawehea ngā taha e rua ki te 5.
x=-\frac{72}{13},y=\frac{73}{13}
Kua oti te pūnaha te whakatau.