Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+5y=16,3x-7y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+5y=16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-5y+16
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-5y+16\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}y+8
Whakareatia \frac{1}{2} ki te -5y+16.
3\left(-\frac{5}{2}y+8\right)-7y=24
Whakakapia te -\frac{5y}{2}+8 mō te x ki tērā atu whārite, 3x-7y=24.
-\frac{15}{2}y+24-7y=24
Whakareatia 3 ki te -\frac{5y}{2}+8.
-\frac{29}{2}y+24=24
Tāpiri -\frac{15y}{2} ki te -7y.
-\frac{29}{2}y=0
Me tango 24 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te -\frac{29}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=8
Whakaurua te 0 mō y ki x=-\frac{5}{2}y+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=8,y=0
Kua oti te pūnaha te whakatau.
2x+5y=16,3x-7y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&5\\3&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}2&5\\3&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}16\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&5\\3&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}16\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}16\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{2\left(-7\right)-5\times 3}&-\frac{5}{2\left(-7\right)-5\times 3}\\-\frac{3}{2\left(-7\right)-5\times 3}&\frac{2}{2\left(-7\right)-5\times 3}\end{matrix}\right)\left(\begin{matrix}16\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{29}&\frac{5}{29}\\\frac{3}{29}&-\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}16\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{29}\times 16+\frac{5}{29}\times 24\\\frac{3}{29}\times 16-\frac{2}{29}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=8,y=0
Tangohia ngā huānga poukapa x me y.
2x+5y=16,3x-7y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 5y=3\times 16,2\times 3x+2\left(-7\right)y=2\times 24
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+15y=48,6x-14y=48
Whakarūnātia.
6x-6x+15y+14y=48-48
Me tango 6x-14y=48 mai i 6x+15y=48 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y+14y=48-48
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
29y=48-48
Tāpiri 15y ki te 14y.
29y=0
Tāpiri 48 ki te -48.
y=0
Whakawehea ngā taha e rua ki te 29.
3x=24
Whakaurua te 0 mō y ki 3x-7y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=8
Whakawehea ngā taha e rua ki te 3.
x=8,y=0
Kua oti te pūnaha te whakatau.