Whakaoti mō x, y
x=5
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+\frac{7}{5}x=3
Whakaarohia te whārite tuarua. Me tāpiri te \frac{7}{5}x ki ngā taha e rua.
2x+5y=-10,\frac{7}{5}x+y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+5y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-5y-10
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-5y-10\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}y-5
Whakareatia \frac{1}{2} ki te -5y-10.
\frac{7}{5}\left(-\frac{5}{2}y-5\right)+y=3
Whakakapia te -\frac{5y}{2}-5 mō te x ki tērā atu whārite, \frac{7}{5}x+y=3.
-\frac{7}{2}y-7+y=3
Whakareatia \frac{7}{5} ki te -\frac{5y}{2}-5.
-\frac{5}{2}y-7=3
Tāpiri -\frac{7y}{2} ki te y.
-\frac{5}{2}y=10
Me tāpiri 7 ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{2}\left(-4\right)-5
Whakaurua te -4 mō y ki x=-\frac{5}{2}y-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=10-5
Whakareatia -\frac{5}{2} ki te -4.
x=5
Tāpiri -5 ki te 10.
x=5,y=-4
Kua oti te pūnaha te whakatau.
y+\frac{7}{5}x=3
Whakaarohia te whārite tuarua. Me tāpiri te \frac{7}{5}x ki ngā taha e rua.
2x+5y=-10,\frac{7}{5}x+y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&5\\\frac{7}{5}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&5\\\frac{7}{5}&1\end{matrix}\right))\left(\begin{matrix}2&5\\\frac{7}{5}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\\frac{7}{5}&1\end{matrix}\right))\left(\begin{matrix}-10\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&5\\\frac{7}{5}&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\\frac{7}{5}&1\end{matrix}\right))\left(\begin{matrix}-10\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\\frac{7}{5}&1\end{matrix}\right))\left(\begin{matrix}-10\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-5\times \frac{7}{5}}&-\frac{5}{2-5\times \frac{7}{5}}\\-\frac{\frac{7}{5}}{2-5\times \frac{7}{5}}&\frac{2}{2-5\times \frac{7}{5}}\end{matrix}\right)\left(\begin{matrix}-10\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&1\\\frac{7}{25}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-10\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-10\right)+3\\\frac{7}{25}\left(-10\right)-\frac{2}{5}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=-4
Tangohia ngā huānga poukapa x me y.
y+\frac{7}{5}x=3
Whakaarohia te whārite tuarua. Me tāpiri te \frac{7}{5}x ki ngā taha e rua.
2x+5y=-10,\frac{7}{5}x+y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{7}{5}\times 2x+\frac{7}{5}\times 5y=\frac{7}{5}\left(-10\right),2\times \frac{7}{5}x+2y=2\times 3
Kia ōrite ai a 2x me \frac{7x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{7}{5} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
\frac{14}{5}x+7y=-14,\frac{14}{5}x+2y=6
Whakarūnātia.
\frac{14}{5}x-\frac{14}{5}x+7y-2y=-14-6
Me tango \frac{14}{5}x+2y=6 mai i \frac{14}{5}x+7y=-14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7y-2y=-14-6
Tāpiri \frac{14x}{5} ki te -\frac{14x}{5}. Ka whakakore atu ngā kupu \frac{14x}{5} me -\frac{14x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=-14-6
Tāpiri 7y ki te -2y.
5y=-20
Tāpiri -14 ki te -6.
y=-4
Whakawehea ngā taha e rua ki te 5.
\frac{7}{5}x-4=3
Whakaurua te -4 mō y ki \frac{7}{5}x+y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{7}{5}x=7
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=5,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}