Whakaoti mō x, y, z
x = \frac{123}{17} = 7\frac{4}{17} \approx 7.235294118
y = \frac{177}{17} = 10\frac{7}{17} \approx 10.411764706
z = \frac{71}{17} = 4\frac{3}{17} \approx 4.176470588
Tohaina
Kua tāruatia ki te papatopenga
x+y+2z=26 2x+4y-12z=6 3x-3y+3z=3
Me raupapa anō ngā whārite.
x=-y-2z+26
Me whakaoti te x+y+2z=26 mō x.
2\left(-y-2z+26\right)+4y-12z=6 3\left(-y-2z+26\right)-3y+3z=3
Whakakapia te -y-2z+26 mō te x i te whārite tuarua me te tuatoru.
y=-23+8z z=25-2y
Me whakaoti ēnei whārite mō y me z takitahi.
z=25-2\left(-23+8z\right)
Whakakapia te -23+8z mō te y i te whārite z=25-2y.
z=\frac{71}{17}
Me whakaoti te z=25-2\left(-23+8z\right) mō z.
y=-23+8\times \frac{71}{17}
Whakakapia te \frac{71}{17} mō te z i te whārite y=-23+8z.
y=\frac{177}{17}
Tātaitia te y i te y=-23+8\times \frac{71}{17}.
x=-\frac{177}{17}-2\times \frac{71}{17}+26
Whakakapia te \frac{177}{17} mō te y me te \frac{71}{17} mō z i te whārite x=-y-2z+26.
x=\frac{123}{17}
Tātaitia te x i te x=-\frac{177}{17}-2\times \frac{71}{17}+26.
x=\frac{123}{17} y=\frac{177}{17} z=\frac{71}{17}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}