Whakaoti mō x, y, z
x=12
y=6
z=4
Tohaina
Kua tāruatia ki te papatopenga
x+y+2z=26 2x+4y-12z=0 3x-3y+3z=30
Me raupapa anō ngā whārite.
x=-y-2z+26
Me whakaoti te x+y+2z=26 mō x.
2\left(-y-2z+26\right)+4y-12z=0 3\left(-y-2z+26\right)-3y+3z=30
Whakakapia te -y-2z+26 mō te x i te whārite tuarua me te tuatoru.
y=-26+8z z=16-2y
Me whakaoti ēnei whārite mō y me z takitahi.
z=16-2\left(-26+8z\right)
Whakakapia te -26+8z mō te y i te whārite z=16-2y.
z=4
Me whakaoti te z=16-2\left(-26+8z\right) mō z.
y=-26+8\times 4
Whakakapia te 4 mō te z i te whārite y=-26+8z.
y=6
Tātaitia te y i te y=-26+8\times 4.
x=-6-2\times 4+26
Whakakapia te 6 mō te y me te 4 mō z i te whārite x=-y-2z+26.
x=12
Tātaitia te x i te x=-6-2\times 4+26.
x=12 y=6 z=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}