Whakaoti mō x, y
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
y = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=0
Whakaarohia te whārite tuarua. Me tāpiri te y ki ngā taha e rua.
2x+4y=5,x+y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+4y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-4y+5
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-4y+5\right)
Whakawehea ngā taha e rua ki te 2.
x=-2y+\frac{5}{2}
Whakareatia \frac{1}{2} ki te -4y+5.
-2y+\frac{5}{2}+y=0
Whakakapia te -2y+\frac{5}{2} mō te x ki tērā atu whārite, x+y=0.
-y+\frac{5}{2}=0
Tāpiri -2y ki te y.
-y=-\frac{5}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
y=\frac{5}{2}
Whakawehea ngā taha e rua ki te -1.
x=-2\times \frac{5}{2}+\frac{5}{2}
Whakaurua te \frac{5}{2} mō y ki x=-2y+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-5+\frac{5}{2}
Whakareatia -2 ki te \frac{5}{2}.
x=-\frac{5}{2}
Tāpiri \frac{5}{2} ki te -5.
x=-\frac{5}{2},y=\frac{5}{2}
Kua oti te pūnaha te whakatau.
x+y=0
Whakaarohia te whārite tuarua. Me tāpiri te y ki ngā taha e rua.
2x+4y=5,x+y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}2&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&4\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4}&-\frac{4}{2-4}\\-\frac{1}{2-4}&\frac{2}{2-4}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&2\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 5\\\frac{1}{2}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\\frac{5}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{5}{2},y=\frac{5}{2}
Tangohia ngā huānga poukapa x me y.
x+y=0
Whakaarohia te whārite tuarua. Me tāpiri te y ki ngā taha e rua.
2x+4y=5,x+y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+4y=5,2x+2y=0
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x-2x+4y-2y=5
Me tango 2x+2y=0 mai i 2x+4y=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-2y=5
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=5
Tāpiri 4y ki te -2y.
y=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
x+\frac{5}{2}=0
Whakaurua te \frac{5}{2} mō y ki x+y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{5}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
x=-\frac{5}{2},y=\frac{5}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}