Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+4y=2,6x+4y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+4y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-4y+2
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-4y+2\right)
Whakawehea ngā taha e rua ki te 2.
x=-2y+1
Whakareatia \frac{1}{2} ki te -4y+2.
6\left(-2y+1\right)+4y=4
Whakakapia te -2y+1 mō te x ki tērā atu whārite, 6x+4y=4.
-12y+6+4y=4
Whakareatia 6 ki te -2y+1.
-8y+6=4
Tāpiri -12y ki te 4y.
-8y=-2
Me tango 6 mai i ngā taha e rua o te whārite.
y=\frac{1}{4}
Whakawehea ngā taha e rua ki te -8.
x=-2\times \frac{1}{4}+1
Whakaurua te \frac{1}{4} mō y ki x=-2y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1}{2}+1
Whakareatia -2 ki te \frac{1}{4}.
x=\frac{1}{2}
Tāpiri 1 ki te -\frac{1}{2}.
x=\frac{1}{2},y=\frac{1}{4}
Kua oti te pūnaha te whakatau.
2x+4y=2,6x+4y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&4\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&4\\6&4\end{matrix}\right))\left(\begin{matrix}2&4\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\6&4\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&4\\6&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\6&4\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\6&4\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-4\times 6}&-\frac{4}{2\times 4-4\times 6}\\-\frac{6}{2\times 4-4\times 6}&\frac{2}{2\times 4-4\times 6}\end{matrix}\right)\left(\begin{matrix}2\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}2\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 2+\frac{1}{4}\times 4\\\frac{3}{8}\times 2-\frac{1}{8}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\\frac{1}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{2},y=\frac{1}{4}
Tangohia ngā huānga poukapa x me y.
2x+4y=2,6x+4y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-6x+4y-4y=2-4
Me tango 6x+4y=4 mai i 2x+4y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-6x=2-4
Tāpiri 4y ki te -4y. Ka whakakore atu ngā kupu 4y me -4y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4x=2-4
Tāpiri 2x ki te -6x.
-4x=-2
Tāpiri 2 ki te -4.
x=\frac{1}{2}
Whakawehea ngā taha e rua ki te -4.
6\times \frac{1}{2}+4y=4
Whakaurua te \frac{1}{2} mō x ki 6x+4y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
3+4y=4
Whakareatia 6 ki te \frac{1}{2}.
4y=1
Me tango 3 mai i ngā taha e rua o te whārite.
y=\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{2},y=\frac{1}{4}
Kua oti te pūnaha te whakatau.