Whakaoti mō x, y
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
y = \frac{12}{5} = 2\frac{2}{5} = 2.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+4y=12,3x+y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+4y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-4y+12
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-4y+12\right)
Whakawehea ngā taha e rua ki te 2.
x=-2y+6
Whakareatia \frac{1}{2} ki te -4y+12.
3\left(-2y+6\right)+y=6
Whakakapia te -2y+6 mō te x ki tērā atu whārite, 3x+y=6.
-6y+18+y=6
Whakareatia 3 ki te -2y+6.
-5y+18=6
Tāpiri -6y ki te y.
-5y=-12
Me tango 18 mai i ngā taha e rua o te whārite.
y=\frac{12}{5}
Whakawehea ngā taha e rua ki te -5.
x=-2\times \frac{12}{5}+6
Whakaurua te \frac{12}{5} mō y ki x=-2y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{24}{5}+6
Whakareatia -2 ki te \frac{12}{5}.
x=\frac{6}{5}
Tāpiri 6 ki te -\frac{24}{5}.
x=\frac{6}{5},y=\frac{12}{5}
Kua oti te pūnaha te whakatau.
2x+4y=12,3x+y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}2&4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&4\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4\times 3}&-\frac{4}{2-4\times 3}\\-\frac{3}{2-4\times 3}&\frac{2}{2-4\times 3}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{2}{5}\\\frac{3}{10}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 12+\frac{2}{5}\times 6\\\frac{3}{10}\times 12-\frac{1}{5}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\\\frac{12}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{6}{5},y=\frac{12}{5}
Tangohia ngā huānga poukapa x me y.
2x+4y=12,3x+y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 4y=3\times 12,2\times 3x+2y=2\times 6
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+12y=36,6x+2y=12
Whakarūnātia.
6x-6x+12y-2y=36-12
Me tango 6x+2y=12 mai i 6x+12y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y-2y=36-12
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10y=36-12
Tāpiri 12y ki te -2y.
10y=24
Tāpiri 36 ki te -12.
y=\frac{12}{5}
Whakawehea ngā taha e rua ki te 10.
3x+\frac{12}{5}=6
Whakaurua te \frac{12}{5} mō y ki 3x+y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=\frac{18}{5}
Me tango \frac{12}{5} mai i ngā taha e rua o te whārite.
x=\frac{6}{5}
Whakawehea ngā taha e rua ki te 3.
x=\frac{6}{5},y=\frac{12}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}