Whakaoti mō x, z, q
x=1
z = -\frac{13}{7} = -1\frac{6}{7} \approx -1.857142857
q=2
Tohaina
Kua tāruatia ki te papatopenga
12x+24\left(3-2x\right)=3\left(2x+2\right)+24
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 6.
12x+72-48x=3\left(2x+2\right)+24
Whakamahia te āhuatanga tohatoha hei whakarea te 24 ki te 3-2x.
-36x+72=3\left(2x+2\right)+24
Pahekotia te 12x me -48x, ka -36x.
-36x+72=6x+6+24
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x+2.
-36x+72=6x+30
Tāpirihia te 6 ki te 24, ka 30.
-36x+72-6x=30
Tangohia te 6x mai i ngā taha e rua.
-42x+72=30
Pahekotia te -36x me -6x, ka -42x.
-42x=30-72
Tangohia te 72 mai i ngā taha e rua.
-42x=-42
Tangohia te 72 i te 30, ka -42.
x=\frac{-42}{-42}
Whakawehea ngā taha e rua ki te -42.
x=1
Whakawehea te -42 ki te -42, kia riro ko 1.
4z+5+3z=-8
Whakaarohia te whārite tuarua. Me tāpiri te 3z ki ngā taha e rua.
7z+5=-8
Pahekotia te 4z me 3z, ka 7z.
7z=-8-5
Tangohia te 5 mai i ngā taha e rua.
7z=-13
Tangohia te 5 i te -8, ka -13.
z=-\frac{13}{7}
Whakawehea ngā taha e rua ki te 7.
4-q=2\left(q-1\right)
Whakaarohia te whārite tuatoru. Me whakarea ngā taha e rua o te whārite ki te 8, arā, te tauraro pātahi he tino iti rawa te kitea o 2,8,4.
4-q=2q-2
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te q-1.
4-q-2q=-2
Tangohia te 2q mai i ngā taha e rua.
4-3q=-2
Pahekotia te -q me -2q, ka -3q.
-3q=-2-4
Tangohia te 4 mai i ngā taha e rua.
-3q=-6
Tangohia te 4 i te -2, ka -6.
q=\frac{-6}{-3}
Whakawehea ngā taha e rua ki te -3.
q=2
Whakawehea te -6 ki te -3, kia riro ko 2.
x=1 z=-\frac{13}{7} q=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}