Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=8,3x+3y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+8
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+8\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+4
Whakareatia \frac{1}{2} ki te -3y+8.
3\left(-\frac{3}{2}y+4\right)+3y=9
Whakakapia te -\frac{3y}{2}+4 mō te x ki tērā atu whārite, 3x+3y=9.
-\frac{9}{2}y+12+3y=9
Whakareatia 3 ki te -\frac{3y}{2}+4.
-\frac{3}{2}y+12=9
Tāpiri -\frac{9y}{2} ki te 3y.
-\frac{3}{2}y=-3
Me tango 12 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times 2+4
Whakaurua te 2 mō y ki x=-\frac{3}{2}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3+4
Whakareatia -\frac{3}{2} ki te 2.
x=1
Tāpiri 4 ki te -3.
x=1,y=2
Kua oti te pūnaha te whakatau.
2x+3y=8,3x+3y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}2&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\3&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\times 3}&-\frac{3}{2\times 3-3\times 3}\\-\frac{3}{2\times 3-3\times 3}&\frac{2}{2\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\1&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8+9\\8-\frac{2}{3}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=2
Tangohia ngā huānga poukapa x me y.
2x+3y=8,3x+3y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-3x+3y-3y=8-9
Me tango 3x+3y=9 mai i 2x+3y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-3x=8-9
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-x=8-9
Tāpiri 2x ki te -3x.
-x=-1
Tāpiri 8 ki te -9.
x=1
Whakawehea ngā taha e rua ki te -1.
3+3y=9
Whakaurua te 1 mō x ki 3x+3y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
3y=6
Me tango 3 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te 3.
x=1,y=2
Kua oti te pūnaha te whakatau.