Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=7,5x+2y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+7
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+7\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{7}{2}
Whakareatia \frac{1}{2} ki te -3y+7.
5\left(-\frac{3}{2}y+\frac{7}{2}\right)+2y=1
Whakakapia te \frac{-3y+7}{2} mō te x ki tērā atu whārite, 5x+2y=1.
-\frac{15}{2}y+\frac{35}{2}+2y=1
Whakareatia 5 ki te \frac{-3y+7}{2}.
-\frac{11}{2}y+\frac{35}{2}=1
Tāpiri -\frac{15y}{2} ki te 2y.
-\frac{11}{2}y=-\frac{33}{2}
Me tango \frac{35}{2} mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times 3+\frac{7}{2}
Whakaurua te 3 mō y ki x=-\frac{3}{2}y+\frac{7}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-9+7}{2}
Whakareatia -\frac{3}{2} ki te 3.
x=-1
Tāpiri \frac{7}{2} ki te -\frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=3
Kua oti te pūnaha te whakatau.
2x+3y=7,5x+2y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}2&3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 5}&-\frac{3}{2\times 2-3\times 5}\\-\frac{5}{2\times 2-3\times 5}&\frac{2}{2\times 2-3\times 5}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}&\frac{3}{11}\\\frac{5}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}\times 7+\frac{3}{11}\\\frac{5}{11}\times 7-\frac{2}{11}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=3
Tangohia ngā huānga poukapa x me y.
2x+3y=7,5x+2y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2x+5\times 3y=5\times 7,2\times 5x+2\times 2y=2
Kia ōrite ai a 2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10x+15y=35,10x+4y=2
Whakarūnātia.
10x-10x+15y-4y=35-2
Me tango 10x+4y=2 mai i 10x+15y=35 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y-4y=35-2
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=35-2
Tāpiri 15y ki te -4y.
11y=33
Tāpiri 35 ki te -2.
y=3
Whakawehea ngā taha e rua ki te 11.
5x+2\times 3=1
Whakaurua te 3 mō y ki 5x+2y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+6=1
Whakareatia 2 ki te 3.
5x=-5
Me tango 6 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 5.
x=-1,y=3
Kua oti te pūnaha te whakatau.