Whakaoti mō x, y
x=-\frac{3}{8}=-0.375
y = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+3y=6,6x+5y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+6
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+6\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+3
Whakareatia \frac{1}{2} ki te -3y+6.
6\left(-\frac{3}{2}y+3\right)+5y=9
Whakakapia te -\frac{3y}{2}+3 mō te x ki tērā atu whārite, 6x+5y=9.
-9y+18+5y=9
Whakareatia 6 ki te -\frac{3y}{2}+3.
-4y+18=9
Tāpiri -9y ki te 5y.
-4y=-9
Me tango 18 mai i ngā taha e rua o te whārite.
y=\frac{9}{4}
Whakawehea ngā taha e rua ki te -4.
x=-\frac{3}{2}\times \frac{9}{4}+3
Whakaurua te \frac{9}{4} mō y ki x=-\frac{3}{2}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{27}{8}+3
Whakareatia -\frac{3}{2} ki te \frac{9}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{3}{8}
Tāpiri 3 ki te -\frac{27}{8}.
x=-\frac{3}{8},y=\frac{9}{4}
Kua oti te pūnaha te whakatau.
2x+3y=6,6x+5y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}2&3\\6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\6&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-3\times 6}&-\frac{3}{2\times 5-3\times 6}\\-\frac{6}{2\times 5-3\times 6}&\frac{2}{2\times 5-3\times 6}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}&\frac{3}{8}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}\times 6+\frac{3}{8}\times 9\\\frac{3}{4}\times 6-\frac{1}{4}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}\\\frac{9}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{3}{8},y=\frac{9}{4}
Tangohia ngā huānga poukapa x me y.
2x+3y=6,6x+5y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 2x+6\times 3y=6\times 6,2\times 6x+2\times 5y=2\times 9
Kia ōrite ai a 2x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
12x+18y=36,12x+10y=18
Whakarūnātia.
12x-12x+18y-10y=36-18
Me tango 12x+10y=18 mai i 12x+18y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y-10y=36-18
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=36-18
Tāpiri 18y ki te -10y.
8y=18
Tāpiri 36 ki te -18.
y=\frac{9}{4}
Whakawehea ngā taha e rua ki te 8.
6x+5\times \frac{9}{4}=9
Whakaurua te \frac{9}{4} mō y ki 6x+5y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+\frac{45}{4}=9
Whakareatia 5 ki te \frac{9}{4}.
6x=-\frac{9}{4}
Me tango \frac{45}{4} mai i ngā taha e rua o te whārite.
x=-\frac{3}{8}
Whakawehea ngā taha e rua ki te 6.
x=-\frac{3}{8},y=\frac{9}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}