Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=6,4x+5y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+6
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+6\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+3
Whakareatia \frac{1}{2} ki te -3y+6.
4\left(-\frac{3}{2}y+3\right)+5y=10
Whakakapia te -\frac{3y}{2}+3 mō te x ki tērā atu whārite, 4x+5y=10.
-6y+12+5y=10
Whakareatia 4 ki te -\frac{3y}{2}+3.
-y+12=10
Tāpiri -6y ki te 5y.
-y=-2
Me tango 12 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -1.
x=-\frac{3}{2}\times 2+3
Whakaurua te 2 mō y ki x=-\frac{3}{2}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3+3
Whakareatia -\frac{3}{2} ki te 2.
x=0
Tāpiri 3 ki te -3.
x=0,y=2
Kua oti te pūnaha te whakatau.
2x+3y=6,4x+5y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}2&3\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-3\times 4}&-\frac{3}{2\times 5-3\times 4}\\-\frac{4}{2\times 5-3\times 4}&\frac{2}{2\times 5-3\times 4}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}&\frac{3}{2}\\2&-1\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\times 6+\frac{3}{2}\times 10\\2\times 6-10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=2
Tangohia ngā huānga poukapa x me y.
2x+3y=6,4x+5y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\times 3y=4\times 6,2\times 4x+2\times 5y=2\times 10
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x+12y=24,8x+10y=20
Whakarūnātia.
8x-8x+12y-10y=24-20
Me tango 8x+10y=20 mai i 8x+12y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y-10y=24-20
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=24-20
Tāpiri 12y ki te -10y.
2y=4
Tāpiri 24 ki te -20.
y=2
Whakawehea ngā taha e rua ki te 2.
4x+5\times 2=10
Whakaurua te 2 mō y ki 4x+5y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+10=10
Whakareatia 5 ki te 2.
4x=0
Me tango 10 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 4.
x=0,y=2
Kua oti te pūnaha te whakatau.