Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=57,3x-5y=\frac{17}{2}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=57
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+57
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+57\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{57}{2}
Whakareatia \frac{1}{2} ki te -3y+57.
3\left(-\frac{3}{2}y+\frac{57}{2}\right)-5y=\frac{17}{2}
Whakakapia te \frac{-3y+57}{2} mō te x ki tērā atu whārite, 3x-5y=\frac{17}{2}.
-\frac{9}{2}y+\frac{171}{2}-5y=\frac{17}{2}
Whakareatia 3 ki te \frac{-3y+57}{2}.
-\frac{19}{2}y+\frac{171}{2}=\frac{17}{2}
Tāpiri -\frac{9y}{2} ki te -5y.
-\frac{19}{2}y=-77
Me tango \frac{171}{2} mai i ngā taha e rua o te whārite.
y=\frac{154}{19}
Whakawehea ngā taha e rua o te whārite ki te -\frac{19}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times \frac{154}{19}+\frac{57}{2}
Whakaurua te \frac{154}{19} mō y ki x=-\frac{3}{2}y+\frac{57}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{231}{19}+\frac{57}{2}
Whakareatia -\frac{3}{2} ki te \frac{154}{19} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{621}{38}
Tāpiri \frac{57}{2} ki te -\frac{231}{19} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{621}{38},y=\frac{154}{19}
Kua oti te pūnaha te whakatau.
2x+3y=57,3x-5y=\frac{17}{2}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}2&3\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\3&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-3\times 3}&-\frac{3}{2\left(-5\right)-3\times 3}\\-\frac{3}{2\left(-5\right)-3\times 3}&\frac{2}{2\left(-5\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}&\frac{3}{19}\\\frac{3}{19}&-\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\times 57+\frac{3}{19}\times \frac{17}{2}\\\frac{3}{19}\times 57-\frac{2}{19}\times \frac{17}{2}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{621}{38}\\\frac{154}{19}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{621}{38},y=\frac{154}{19}
Tangohia ngā huānga poukapa x me y.
2x+3y=57,3x-5y=\frac{17}{2}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 3y=3\times 57,2\times 3x+2\left(-5\right)y=2\times \frac{17}{2}
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+9y=171,6x-10y=17
Whakarūnātia.
6x-6x+9y+10y=171-17
Me tango 6x-10y=17 mai i 6x+9y=171 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y+10y=171-17
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
19y=171-17
Tāpiri 9y ki te 10y.
19y=154
Tāpiri 171 ki te -17.
y=\frac{154}{19}
Whakawehea ngā taha e rua ki te 19.
3x-5\times \frac{154}{19}=\frac{17}{2}
Whakaurua te \frac{154}{19} mō y ki 3x-5y=\frac{17}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-\frac{770}{19}=\frac{17}{2}
Whakareatia -5 ki te \frac{154}{19}.
3x=\frac{1863}{38}
Me tāpiri \frac{770}{19} ki ngā taha e rua o te whārite.
x=\frac{621}{38}
Whakawehea ngā taha e rua ki te 3.
x=\frac{621}{38},y=\frac{154}{19}
Kua oti te pūnaha te whakatau.