Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=53,3x-y=19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=53
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+53
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+53\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{53}{2}
Whakareatia \frac{1}{2} ki te -3y+53.
3\left(-\frac{3}{2}y+\frac{53}{2}\right)-y=19
Whakakapia te \frac{-3y+53}{2} mō te x ki tērā atu whārite, 3x-y=19.
-\frac{9}{2}y+\frac{159}{2}-y=19
Whakareatia 3 ki te \frac{-3y+53}{2}.
-\frac{11}{2}y+\frac{159}{2}=19
Tāpiri -\frac{9y}{2} ki te -y.
-\frac{11}{2}y=-\frac{121}{2}
Me tango \frac{159}{2} mai i ngā taha e rua o te whārite.
y=11
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times 11+\frac{53}{2}
Whakaurua te 11 mō y ki x=-\frac{3}{2}y+\frac{53}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-33+53}{2}
Whakareatia -\frac{3}{2} ki te 11.
x=10
Tāpiri \frac{53}{2} ki te -\frac{33}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=10,y=11
Kua oti te pūnaha te whakatau.
2x+3y=53,3x-y=19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}53\\19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}2&3\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}53\\19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}53\\19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}53\\19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3\times 3}&-\frac{3}{2\left(-1\right)-3\times 3}\\-\frac{3}{2\left(-1\right)-3\times 3}&\frac{2}{2\left(-1\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}53\\19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{3}{11}\\\frac{3}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}53\\19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 53+\frac{3}{11}\times 19\\\frac{3}{11}\times 53-\frac{2}{11}\times 19\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=11
Tangohia ngā huānga poukapa x me y.
2x+3y=53,3x-y=19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 3y=3\times 53,2\times 3x+2\left(-1\right)y=2\times 19
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+9y=159,6x-2y=38
Whakarūnātia.
6x-6x+9y+2y=159-38
Me tango 6x-2y=38 mai i 6x+9y=159 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y+2y=159-38
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=159-38
Tāpiri 9y ki te 2y.
11y=121
Tāpiri 159 ki te -38.
y=11
Whakawehea ngā taha e rua ki te 11.
3x-11=19
Whakaurua te 11 mō y ki 3x-y=19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=30
Me tāpiri 11 ki ngā taha e rua o te whārite.
x=10
Whakawehea ngā taha e rua ki te 3.
x=10,y=11
Kua oti te pūnaha te whakatau.