Whakaoti mō x, y
x=\frac{6-y_{2}}{7}
y=\frac{2y_{2}+23}{21}
Graph
Pātaitai
Algebra
\left. \begin{array} { l } { 2 x + 3 y = 5 } \\ { 7 x = 6 - y 2 } \end{array} \right.
Tohaina
Kua tāruatia ki te papatopenga
7x=6-y_{2},2x+3y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x=6-y_{2}
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=\frac{6-y_{2}}{7}
Whakawehea ngā taha e rua ki te 7.
2\times \frac{6-y_{2}}{7}+3y=5
Whakakapia te \frac{6-y_{2}}{7} mō te x ki tērā atu whārite, 2x+3y=5.
\frac{12-2y_{2}}{7}+3y=5
Whakareatia 2 ki te \frac{6-y_{2}}{7}.
3y=\frac{2y_{2}+23}{7}
Me tango \frac{12-2y_{2}}{7} mai i ngā taha e rua o te whārite.
y=\frac{2y_{2}+23}{21}
Whakawehea ngā taha e rua ki te 3.
x=\frac{6-y_{2}}{7},y=\frac{2y_{2}+23}{21}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}