Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x+2y=6
Whakaarohia te whārite tuarua. Me tāpiri te 2y ki ngā taha e rua.
2x+3y=5,7x+2y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+5
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+5\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{5}{2}
Whakareatia \frac{1}{2} ki te -3y+5.
7\left(-\frac{3}{2}y+\frac{5}{2}\right)+2y=6
Whakakapia te \frac{-3y+5}{2} mō te x ki tērā atu whārite, 7x+2y=6.
-\frac{21}{2}y+\frac{35}{2}+2y=6
Whakareatia 7 ki te \frac{-3y+5}{2}.
-\frac{17}{2}y+\frac{35}{2}=6
Tāpiri -\frac{21y}{2} ki te 2y.
-\frac{17}{2}y=-\frac{23}{2}
Me tango \frac{35}{2} mai i ngā taha e rua o te whārite.
y=\frac{23}{17}
Whakawehea ngā taha e rua o te whārite ki te -\frac{17}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times \frac{23}{17}+\frac{5}{2}
Whakaurua te \frac{23}{17} mō y ki x=-\frac{3}{2}y+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{69}{34}+\frac{5}{2}
Whakareatia -\frac{3}{2} ki te \frac{23}{17} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{8}{17}
Tāpiri \frac{5}{2} ki te -\frac{69}{34} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{8}{17},y=\frac{23}{17}
Kua oti te pūnaha te whakatau.
7x+2y=6
Whakaarohia te whārite tuarua. Me tāpiri te 2y ki ngā taha e rua.
2x+3y=5,7x+2y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\7&2\end{matrix}\right))\left(\begin{matrix}2&3\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&2\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\7&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&2\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&2\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 7}&-\frac{3}{2\times 2-3\times 7}\\-\frac{7}{2\times 2-3\times 7}&\frac{2}{2\times 2-3\times 7}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{17}&\frac{3}{17}\\\frac{7}{17}&-\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{17}\times 5+\frac{3}{17}\times 6\\\frac{7}{17}\times 5-\frac{2}{17}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{17}\\\frac{23}{17}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{8}{17},y=\frac{23}{17}
Tangohia ngā huānga poukapa x me y.
7x+2y=6
Whakaarohia te whārite tuarua. Me tāpiri te 2y ki ngā taha e rua.
2x+3y=5,7x+2y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 2x+7\times 3y=7\times 5,2\times 7x+2\times 2y=2\times 6
Kia ōrite ai a 2x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
14x+21y=35,14x+4y=12
Whakarūnātia.
14x-14x+21y-4y=35-12
Me tango 14x+4y=12 mai i 14x+21y=35 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
21y-4y=35-12
Tāpiri 14x ki te -14x. Ka whakakore atu ngā kupu 14x me -14x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
17y=35-12
Tāpiri 21y ki te -4y.
17y=23
Tāpiri 35 ki te -12.
y=\frac{23}{17}
Whakawehea ngā taha e rua ki te 17.
7x+2\times \frac{23}{17}=6
Whakaurua te \frac{23}{17} mō y ki 7x+2y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+\frac{46}{17}=6
Whakareatia 2 ki te \frac{23}{17}.
7x=\frac{56}{17}
Me tango \frac{46}{17} mai i ngā taha e rua o te whārite.
x=\frac{8}{17}
Whakawehea ngā taha e rua ki te 7.
x=\frac{8}{17},y=\frac{23}{17}
Kua oti te pūnaha te whakatau.