Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=5,3x+2y=76
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+5
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+5\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{5}{2}
Whakareatia \frac{1}{2} ki te -3y+5.
3\left(-\frac{3}{2}y+\frac{5}{2}\right)+2y=76
Whakakapia te \frac{-3y+5}{2} mō te x ki tērā atu whārite, 3x+2y=76.
-\frac{9}{2}y+\frac{15}{2}+2y=76
Whakareatia 3 ki te \frac{-3y+5}{2}.
-\frac{5}{2}y+\frac{15}{2}=76
Tāpiri -\frac{9y}{2} ki te 2y.
-\frac{5}{2}y=\frac{137}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
y=-\frac{137}{5}
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\left(-\frac{137}{5}\right)+\frac{5}{2}
Whakaurua te -\frac{137}{5} mō y ki x=-\frac{3}{2}y+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{411}{10}+\frac{5}{2}
Whakareatia -\frac{3}{2} ki te -\frac{137}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{218}{5}
Tāpiri \frac{5}{2} ki te \frac{411}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{218}{5},y=-\frac{137}{5}
Kua oti te pūnaha te whakatau.
2x+3y=5,3x+2y=76
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\76\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\76\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\76\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\76\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 3}&-\frac{3}{2\times 2-3\times 3}\\-\frac{3}{2\times 2-3\times 3}&\frac{2}{2\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}5\\76\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\76\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 5+\frac{3}{5}\times 76\\\frac{3}{5}\times 5-\frac{2}{5}\times 76\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{218}{5}\\-\frac{137}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{218}{5},y=-\frac{137}{5}
Tangohia ngā huānga poukapa x me y.
2x+3y=5,3x+2y=76
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 3y=3\times 5,2\times 3x+2\times 2y=2\times 76
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+9y=15,6x+4y=152
Whakarūnātia.
6x-6x+9y-4y=15-152
Me tango 6x+4y=152 mai i 6x+9y=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y-4y=15-152
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=15-152
Tāpiri 9y ki te -4y.
5y=-137
Tāpiri 15 ki te -152.
y=-\frac{137}{5}
Whakawehea ngā taha e rua ki te 5.
3x+2\left(-\frac{137}{5}\right)=76
Whakaurua te -\frac{137}{5} mō y ki 3x+2y=76. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-\frac{274}{5}=76
Whakareatia 2 ki te -\frac{137}{5}.
3x=\frac{654}{5}
Me tāpiri \frac{274}{5} ki ngā taha e rua o te whārite.
x=\frac{218}{5}
Whakawehea ngā taha e rua ki te 3.
x=\frac{218}{5},y=-\frac{137}{5}
Kua oti te pūnaha te whakatau.