Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=4,x+y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+4
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+4\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+2
Whakareatia \frac{1}{2} ki te -3y+4.
-\frac{3}{2}y+2+y=4
Whakakapia te -\frac{3y}{2}+2 mō te x ki tērā atu whārite, x+y=4.
-\frac{1}{2}y+2=4
Tāpiri -\frac{3y}{2} ki te y.
-\frac{1}{2}y=2
Me tango 2 mai i ngā taha e rua o te whārite.
y=-4
Me whakarea ngā taha e rua ki te -2.
x=-\frac{3}{2}\left(-4\right)+2
Whakaurua te -4 mō y ki x=-\frac{3}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=6+2
Whakareatia -\frac{3}{2} ki te -4.
x=8
Tāpiri 2 ki te 6.
x=8,y=-4
Kua oti te pūnaha te whakatau.
2x+3y=4,x+y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}2&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3}&-\frac{3}{2-3}\\-\frac{1}{2-3}&\frac{2}{2-3}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&3\\1&-2\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4+3\times 4\\4-2\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=8,y=-4
Tangohia ngā huānga poukapa x me y.
2x+3y=4,x+y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+3y=4,2x+2y=2\times 4
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+3y=4,2x+2y=8
Whakarūnātia.
2x-2x+3y-2y=4-8
Me tango 2x+2y=8 mai i 2x+3y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-2y=4-8
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=4-8
Tāpiri 3y ki te -2y.
y=-4
Tāpiri 4 ki te -8.
x-4=4
Whakaurua te -4 mō y ki x+y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=8
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=8,y=-4
Kua oti te pūnaha te whakatau.