Whakaoti mō x, y
x=-57
y=48
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+3y=30,6x+8y=42
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+30
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+30\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+15
Whakareatia \frac{1}{2} ki te -3y+30.
6\left(-\frac{3}{2}y+15\right)+8y=42
Whakakapia te -\frac{3y}{2}+15 mō te x ki tērā atu whārite, 6x+8y=42.
-9y+90+8y=42
Whakareatia 6 ki te -\frac{3y}{2}+15.
-y+90=42
Tāpiri -9y ki te 8y.
-y=-48
Me tango 90 mai i ngā taha e rua o te whārite.
y=48
Whakawehea ngā taha e rua ki te -1.
x=-\frac{3}{2}\times 48+15
Whakaurua te 48 mō y ki x=-\frac{3}{2}y+15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-72+15
Whakareatia -\frac{3}{2} ki te 48.
x=-57
Tāpiri 15 ki te -72.
x=-57,y=48
Kua oti te pūnaha te whakatau.
2x+3y=30,6x+8y=42
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\6&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\42\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\6&8\end{matrix}\right))\left(\begin{matrix}2&3\\6&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&8\end{matrix}\right))\left(\begin{matrix}30\\42\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\6&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&8\end{matrix}\right))\left(\begin{matrix}30\\42\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&8\end{matrix}\right))\left(\begin{matrix}30\\42\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{2\times 8-3\times 6}&-\frac{3}{2\times 8-3\times 6}\\-\frac{6}{2\times 8-3\times 6}&\frac{2}{2\times 8-3\times 6}\end{matrix}\right)\left(\begin{matrix}30\\42\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&\frac{3}{2}\\3&-1\end{matrix}\right)\left(\begin{matrix}30\\42\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\times 30+\frac{3}{2}\times 42\\3\times 30-42\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-57\\48\end{matrix}\right)
Mahia ngā tātaitanga.
x=-57,y=48
Tangohia ngā huānga poukapa x me y.
2x+3y=30,6x+8y=42
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 2x+6\times 3y=6\times 30,2\times 6x+2\times 8y=2\times 42
Kia ōrite ai a 2x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
12x+18y=180,12x+16y=84
Whakarūnātia.
12x-12x+18y-16y=180-84
Me tango 12x+16y=84 mai i 12x+18y=180 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y-16y=180-84
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=180-84
Tāpiri 18y ki te -16y.
2y=96
Tāpiri 180 ki te -84.
y=48
Whakawehea ngā taha e rua ki te 2.
6x+8\times 48=42
Whakaurua te 48 mō y ki 6x+8y=42. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+384=42
Whakareatia 8 ki te 48.
6x=-342
Me tango 384 mai i ngā taha e rua o te whārite.
x=-57
Whakawehea ngā taha e rua ki te 6.
x=-57,y=48
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}