Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=19,4x+11y=53
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=19
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+19
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+19\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{19}{2}
Whakareatia \frac{1}{2} ki te -3y+19.
4\left(-\frac{3}{2}y+\frac{19}{2}\right)+11y=53
Whakakapia te \frac{-3y+19}{2} mō te x ki tērā atu whārite, 4x+11y=53.
-6y+38+11y=53
Whakareatia 4 ki te \frac{-3y+19}{2}.
5y+38=53
Tāpiri -6y ki te 11y.
5y=15
Me tango 38 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 5.
x=-\frac{3}{2}\times 3+\frac{19}{2}
Whakaurua te 3 mō y ki x=-\frac{3}{2}y+\frac{19}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-9+19}{2}
Whakareatia -\frac{3}{2} ki te 3.
x=5
Tāpiri \frac{19}{2} ki te -\frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=3
Kua oti te pūnaha te whakatau.
2x+3y=19,4x+11y=53
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\4&11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\53\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\4&11\end{matrix}\right))\left(\begin{matrix}2&3\\4&11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&11\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\4&11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&11\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&11\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{2\times 11-3\times 4}&-\frac{3}{2\times 11-3\times 4}\\-\frac{4}{2\times 11-3\times 4}&\frac{2}{2\times 11-3\times 4}\end{matrix}\right)\left(\begin{matrix}19\\53\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{10}&-\frac{3}{10}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}19\\53\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{10}\times 19-\frac{3}{10}\times 53\\-\frac{2}{5}\times 19+\frac{1}{5}\times 53\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=3
Tangohia ngā huānga poukapa x me y.
2x+3y=19,4x+11y=53
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\times 3y=4\times 19,2\times 4x+2\times 11y=2\times 53
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x+12y=76,8x+22y=106
Whakarūnātia.
8x-8x+12y-22y=76-106
Me tango 8x+22y=106 mai i 8x+12y=76 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y-22y=76-106
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10y=76-106
Tāpiri 12y ki te -22y.
-10y=-30
Tāpiri 76 ki te -106.
y=3
Whakawehea ngā taha e rua ki te -10.
4x+11\times 3=53
Whakaurua te 3 mō y ki 4x+11y=53. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+33=53
Whakareatia 11 ki te 3.
4x=20
Me tango 33 mai i ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 4.
x=5,y=3
Kua oti te pūnaha te whakatau.